ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.03568
  4. Cited By
Explainable Recommendation via Multi-Task Learning in Opinionated Text
  Data

Explainable Recommendation via Multi-Task Learning in Opinionated Text Data

10 June 2018
Nan Wang
Hongning Wang
Yiling Jia
Yue Yin
ArXivPDFHTML

Papers citing "Explainable Recommendation via Multi-Task Learning in Opinionated Text Data"

22 / 22 papers shown
Title
Display Content, Display Methods and Evaluation Methods of the HCI in Explainable Recommender Systems: A Survey
Display Content, Display Methods and Evaluation Methods of the HCI in Explainable Recommender Systems: A Survey
Weiqing Li
Yue Xu
Yuefeng Li
Yinghui Huang
38
0
0
14 May 2025
HF4Rec: Human-Like Feedback-Driven Optimization Framework for Explainable Recommendation
HF4Rec: Human-Like Feedback-Driven Optimization Framework for Explainable Recommendation
Jiakai Tang
Jingsen Zhang
Zihang Tian
Xueyang Feng
Lei Wang
Xu Chen
OffRL
252
0
0
19 Apr 2025
AOTree: Aspect Order Tree-based Model for Explainable Recommendation
AOTree: Aspect Order Tree-based Model for Explainable Recommendation
Wenxin Zhao
Peng Zhang
Hansu Gu
Dongsheng Li
Tun Lu
Ning Gu
38
0
0
29 Jul 2024
Stability of Explainable Recommendation
Stability of Explainable Recommendation
Sairamvinay Vijayaraghavan
Prasant Mohapatra
AAML
49
1
0
03 May 2024
Robust Explainable Recommendation
Robust Explainable Recommendation
Sairamvinay Vijayaraghavan
Prasant Mohapatra
AAML
45
0
0
03 May 2024
Towards Explainable Collaborative Filtering with Taste Clusters Learning
Towards Explainable Collaborative Filtering with Taste Clusters Learning
Yuntao Du
Jianxun Lian
Jing Yao
Xiting Wang
Mingqi Wu
Lu Chen
Yunjun Gao
Xing Xie
FedML
30
6
0
27 Apr 2023
Explaining Recommendation System Using Counterfactual Textual
  Explanations
Explaining Recommendation System Using Counterfactual Textual Explanations
Niloofar Ranjbar
S. Momtazi
MohammadMehdi Homayounpour
37
4
0
14 Mar 2023
Rank-LIME: Local Model-Agnostic Feature Attribution for Learning to Rank
Rank-LIME: Local Model-Agnostic Feature Attribution for Learning to Rank
Tanya Chowdhury
Razieh Rahimi
James Allan
FAtt
40
18
0
24 Dec 2022
Learning to Counterfactually Explain Recommendations
Learning to Counterfactually Explain Recommendations
Yuanshun Yao
Chong Wang
Hang Li
CML
OffRL
22
1
0
17 Nov 2022
Situating Recommender Systems in Practice: Towards Inductive Learning
  and Incremental Updates
Situating Recommender Systems in Practice: Towards Inductive Learning and Incremental Updates
Tobias Schnabel
Mengting Wan
Longqi Yang
HAI
27
9
0
11 Nov 2022
COFFEE: Counterfactual Fairness for Personalized Text Generation in
  Explainable Recommendation
COFFEE: Counterfactual Fairness for Personalized Text Generation in Explainable Recommendation
Nan Wang
Qifan Wang
Yi-Chia Wang
Maziar Sanjabi
Jingzhou Liu
Hamed Firooz
Hongning Wang
Shaoliang Nie
33
6
0
14 Oct 2022
Explainability in Music Recommender Systems
Explainability in Music Recommender Systems
Darius Afchar
Alessandro B. Melchiorre
Markus Schedl
Romain Hennequin
Elena V. Epure
Manuel Moussallam
39
48
0
25 Jan 2022
Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders
  up to 100 Trillion Parameters
Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters
Xiangru Lian
Binhang Yuan
Xuefeng Zhu
Yulong Wang
Yongjun He
...
Lei Yuan
Hai-bo Yu
Sen Yang
Ce Zhang
Ji Liu
VLM
33
34
0
10 Nov 2021
Comparative Explanations of Recommendations
Comparative Explanations of Recommendations
Aobo Yang
Nan Wang
Renqin Cai
Hongbo Deng
Hongning Wang
31
11
0
01 Nov 2021
From Intrinsic to Counterfactual: On the Explainability of
  Contextualized Recommender Systems
From Intrinsic to Counterfactual: On the Explainability of Contextualized Recommender Systems
Yao Zhou
Haonan Wang
Jingrui He
Haixun Wang
39
15
0
28 Oct 2021
Counterfactual Explainable Recommendation
Counterfactual Explainable Recommendation
Juntao Tan
Shuyuan Xu
Yingqiang Ge
Yunqi Li
Xu Chen
Yongfeng Zhang
CML
40
141
0
24 Aug 2021
Deep Latent Emotion Network for Multi-Task Learning
Deep Latent Emotion Network for Multi-Task Learning
Huangbin Zhang
Chong Zhao
Yu Zhang
Danlei Wang
Haichao Yang
22
2
0
18 Apr 2021
Explanation as a Defense of Recommendation
Explanation as a Defense of Recommendation
Aobo Yang
Nan Wang
Hongbo Deng
Hongning Wang
AAML
20
23
0
24 Jan 2021
Generate Natural Language Explanations for Recommendation
Generate Natural Language Explanations for Recommendation
H. Chen
Xu Chen
Shaoyun Shi
Yongfeng Zhang
LRM
22
60
0
09 Jan 2021
CATN: Cross-Domain Recommendation for Cold-Start Users via Aspect
  Transfer Network
CATN: Cross-Domain Recommendation for Cold-Start Users via Aspect Transfer Network
Cheng Zhao
Chenliang Li
Rong Xiao
Hongbo Deng
Aixin Sun
LRM
24
174
0
21 May 2020
PRINCE: Provider-side Interpretability with Counterfactual Explanations
  in Recommender Systems
PRINCE: Provider-side Interpretability with Counterfactual Explanations in Recommender Systems
Azin Ghazimatin
Oana Balalau
Rishiraj Saha Roy
Gerhard Weikum
FAtt
27
97
0
19 Nov 2019
Explainable Recommendation: A Survey and New Perspectives
Explainable Recommendation: A Survey and New Perspectives
Yongfeng Zhang
Xu Chen
XAI
LRM
52
867
0
30 Apr 2018
1