ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.03195
  4. Cited By
Obtaining fairness using optimal transport theory

Obtaining fairness using optimal transport theory

8 June 2018
E. del Barrio
Fabrice Gamboa
Paula Gordaliza
Jean-Michel Loubes
    FaML
ArXivPDFHTML

Papers citing "Obtaining fairness using optimal transport theory"

44 / 44 papers shown
Title
FaiREE: Fair Classification with Finite-Sample and Distribution-Free Guarantee
FaiREE: Fair Classification with Finite-Sample and Distribution-Free Guarantee
Puheng Li
James Zou
Linjun Zhang
FaML
98
4
0
13 Mar 2025
Fair Text Classification via Transferable Representations
Thibaud Leteno
Michael Perrot
Charlotte Laclau
Antoine Gourru
Christophe Gravier
FaML
93
0
0
10 Mar 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
51
0
0
03 Feb 2025
Efficient Fairness-Performance Pareto Front Computation
Efficient Fairness-Performance Pareto Front Computation
Mark Kozdoba
Binyamin Perets
Shie Mannor
38
0
0
26 Sep 2024
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Sarah Boufelja
Anthony Quinn
Robert Shorten
OT
54
0
0
04 Aug 2024
Long-Term Fairness in Sequential Multi-Agent Selection with Positive
  Reinforcement
Long-Term Fairness in Sequential Multi-Agent Selection with Positive Reinforcement
Bhagyashree Puranik
Ozgur Guldogan
Upamanyu Madhow
Ramtin Pedarsani
45
0
0
10 Jul 2024
From Discrete to Continuous: Deep Fair Clustering With Transferable
  Representations
From Discrete to Continuous: Deep Fair Clustering With Transferable Representations
Xiang Zhang
37
0
0
24 Mar 2024
OTClean: Data Cleaning for Conditional Independence Violations using
  Optimal Transport
OTClean: Data Cleaning for Conditional Independence Violations using Optimal Transport
Alireza Pirhadi
Mohammad Hossein Moslemi
Alexander Cloninger
Mostafa Milani
Babak Salimi
33
4
0
04 Mar 2024
Fair Wasserstein Coresets
Fair Wasserstein Coresets
Zikai Xiong
Niccolò Dalmasso
Shubham Sharma
Freddy Lecue
Daniele Magazzeni
Vamsi K. Potluru
T. Balch
Manuela Veloso
39
2
0
09 Nov 2023
Fairness in Multi-Task Learning via Wasserstein Barycenters
Fairness in Multi-Task Learning via Wasserstein Barycenters
Franccois Hu
Philipp Ratz
Arthur Charpentier
44
10
0
16 Jun 2023
Counterpart Fairness -- Addressing Systematic between-group Differences
  in Fairness Evaluation
Counterpart Fairness -- Addressing Systematic between-group Differences in Fairness Evaluation
Yifei Wang
Zhengyang Zhou
Liqin Wang
John Laurentiev
Peter Hou
Li Zhou
Pengyu Hong
35
0
0
29 May 2023
Consistent Optimal Transport with Empirical Conditional Measures
Consistent Optimal Transport with Empirical Conditional Measures
Piyushi Manupriya
Rachit Keerti Das
Sayantan Biswas
S. Jagarlapudi
OT
50
3
0
25 May 2023
Runtime Monitoring of Dynamic Fairness Properties
Runtime Monitoring of Dynamic Fairness Properties
T. Henzinger
Mahyar Karimi
Konstantin Kueffner
Kaushik Mallik
40
14
0
08 May 2023
Quantile-constrained Wasserstein projections for robust interpretability
  of numerical and machine learning models
Quantile-constrained Wasserstein projections for robust interpretability of numerical and machine learning models
Marouane Il Idrissi
Nicolas Bousquet
Fabrice Gamboa
Bertrand Iooss
Jean-Michel Loubes
55
3
0
23 Sep 2022
Fair mapping
Fair mapping
Sébastien Gambs
Rosin Claude Ngueveu
42
0
0
01 Sep 2022
An improved central limit theorem and fast convergence rates for
  entropic transportation costs
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
36
32
0
19 Apr 2022
Fairness constraint in Structural Econometrics and Application to fair
  estimation using Instrumental Variables
Fairness constraint in Structural Econometrics and Application to fair estimation using Instrumental Variables
S. Centorrino
J. Florens
Jean-Michel Loubes
FaML
20
1
0
16 Feb 2022
Obtaining Dyadic Fairness by Optimal Transport
Obtaining Dyadic Fairness by Optimal Transport
Moyi Yang
Junjie Sheng
Xiangfeng Wang
Wenyan Liu
Bo Jin
Jun Wang
H. Zha
31
6
0
09 Feb 2022
Optimal Transport of Classifiers to Fairness
Optimal Transport of Classifiers to Fairness
Maarten Buyl
T. D. Bie
FaML
13
10
0
08 Feb 2022
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Luc Brogat-Motte
Rémi Flamary
Céline Brouard
Juho Rousu
Florence dÁlché-Buc
38
19
0
08 Feb 2022
Fairness guarantee in multi-class classification
Fairness guarantee in multi-class classification
Christophe Denis
Romuald Elie
Mohamed Hebiri
Franccois Hu
FaML
57
48
0
28 Sep 2021
Plugin Estimation of Smooth Optimal Transport Maps
Plugin Estimation of Smooth Optimal Transport Maps
Tudor Manole
Sivaraman Balakrishnan
Jonathan Niles-Weed
Larry A. Wasserman
OT
33
92
0
26 Jul 2021
Sampling From the Wasserstein Barycenter
Sampling From the Wasserstein Barycenter
Chiheb Daaloul
Thibaut Le Gouic
J. Liandrat
M. I. O. Technology
20
6
0
04 May 2021
Fairness with Continuous Optimal Transport
Fairness with Continuous Optimal Transport
Silvia Chiappa
Aldo Pacchiano
OT
45
12
0
06 Jan 2021
A Distributionally Robust Approach to Fair Classification
A Distributionally Robust Approach to Fair Classification
Bahar Taşkesen
Viet Anh Nguyen
Daniel Kuhn
Jose H. Blanchet
FaML
28
61
0
18 Jul 2020
Fair Regression with Wasserstein Barycenters
Fair Regression with Wasserstein Barycenters
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
35
101
0
12 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
40
0
26 May 2020
Projection to Fairness in Statistical Learning
Projection to Fairness in Statistical Learning
Thibaut Le Gouic
Jean-Michel Loubes
Philippe Rigollet
33
3
0
24 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
55
371
0
30 Apr 2020
A survey of bias in Machine Learning through the prism of Statistical
  Parity for the Adult Data Set
A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set
Philippe C. Besse
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
Laurent Risser
FaML
22
64
0
31 Mar 2020
Fairness in Learning-Based Sequential Decision Algorithms: A Survey
Fairness in Learning-Based Sequential Decision Algorithms: A Survey
Xueru Zhang
M. Liu
FaML
48
51
0
14 Jan 2020
Leveraging Semi-Supervised Learning for Fairness using Neural Networks
Leveraging Semi-Supervised Learning for Fairness using Neural Networks
Vahid Noroozi
S. Bahaadini
Samira Sheikhi
Nooshin Mojab
Philip S. Yu
8
7
0
31 Dec 2019
Quantitative stability of optimal transport maps and linearization of
  the 2-Wasserstein space
Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space
Q. Mérigot
Alex Delalande
Frédéric Chazal
OT
27
44
0
14 Oct 2019
Estimation of Wasserstein distances in the Spiked Transport Model
Estimation of Wasserstein distances in the Spiked Transport Model
Jonathan Niles-Weed
Philippe Rigollet
29
102
0
16 Sep 2019
Tackling Algorithmic Bias in Neural-Network Classifiers using
  Wasserstein-2 Regularization
Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
30
21
0
15 Aug 2019
Wasserstein Fair Classification
Wasserstein Fair Classification
Ray Jiang
Aldo Pacchiano
T. Stepleton
Heinrich Jiang
Silvia Chiappa
33
174
0
28 Jul 2019
Statistical data analysis in the Wasserstein space
Statistical data analysis in the Wasserstein space
Jérémie Bigot
27
29
0
19 Jul 2019
Learning Fair Representations for Kernel Models
Learning Fair Representations for Kernel Models
Zilong Tan
Samuel Yeom
Matt Fredrikson
Ameet Talwalkar
FaML
38
25
0
27 Jun 2019
FlipTest: Fairness Testing via Optimal Transport
FlipTest: Fairness Testing via Optimal Transport
Emily Black
Samuel Yeom
Matt Fredrikson
30
94
0
21 Jun 2019
Minimax estimation of smooth optimal transport maps
Minimax estimation of smooth optimal transport maps
Jan-Christian Hütter
Philippe Rigollet
OT
29
28
0
14 May 2019
Repairing without Retraining: Avoiding Disparate Impact with
  Counterfactual Distributions
Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions
Hao Wang
Berk Ustun
Flavio du Pin Calmon
FaML
36
83
0
29 Jan 2019
Fairness risk measures
Fairness risk measures
Robert C. Williamson
A. Menon
FaML
36
135
0
24 Jan 2019
A statistical framework for fair predictive algorithms
A statistical framework for fair predictive algorithms
K. Lum
J. Johndrow
FaML
179
105
0
25 Oct 2016
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,093
0
24 Oct 2016
1