ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.02658
  4. Cited By
Super-Resolution using Convolutional Neural Networks without Any
  Checkerboard Artifacts

Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts

7 June 2018
Y. Sugawara
Sayaka Shiota
Hitoshi Kiya
    SupR
ArXivPDFHTML

Papers citing "Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts"

7 / 7 papers shown
Title
High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise
  Discriminative Feature Matching Loss
High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss
Ke Wang
Jonathan I. Tamir
A. D. Goyeneche
U. Wollner
R. Brada
Stella X. Yu
Michael Lustig
15
18
0
27 Aug 2021
Fake-image detection with Robust Hashing
Fake-image detection with Robust Hashing
Miki Tanaka
Hitoshi Kiya
21
8
0
02 Feb 2021
CycleGAN without checkerboard artifacts for counter-forensics of
  fake-image detection
CycleGAN without checkerboard artifacts for counter-forensics of fake-image detection
Takayuki Osakabe
Miki Tanaka
Yuma Kinoshita
Hitoshi Kiya
20
13
0
01 Dec 2020
NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image
NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image
Boaz Arad
Radu Timofte
Ohad Ben-Shahar
Yi Lin
G. Finlayson
Shai Givati
Mohamed H. Sedky
54
122
0
07 May 2020
MXR-U-Nets for Real Time Hyperspectral Reconstruction
MXR-U-Nets for Real Time Hyperspectral Reconstruction
Atmadeep Banerjee
Akash Palrecha
SupR
25
11
0
15 Apr 2020
Fixed smooth convolutional layer for avoiding checkerboard artifacts in
  CNNs
Fixed smooth convolutional layer for avoiding checkerboard artifacts in CNNs
Yuma Kinoshita
Hitoshi Kiya
28
19
0
06 Feb 2020
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
231
5,176
0
16 Sep 2016
1