ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.02336
  4. Cited By
Spatial Frequency Loss for Learning Convolutional Autoencoders

Spatial Frequency Loss for Learning Convolutional Autoencoders

6 June 2018
N. Ichimura
ArXiv (abs)PDFHTML

Papers citing "Spatial Frequency Loss for Learning Convolutional Autoencoders"

6 / 6 papers shown
Title
Proposal Flow: Semantic Correspondences from Object Proposals
Proposal Flow: Semantic Correspondences from Object Proposals
Bumsub Ham
Minsu Cho
Cordelia Schmid
Jean Ponce
117
135
0
21 Mar 2017
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Justin Johnson
Alexandre Alahi
Li Fei-Fei
SupR
237
10,262
0
27 Mar 2016
Unsupervised Deep Embedding for Clustering Analysis
Unsupervised Deep Embedding for Clustering Analysis
Junyuan Xie
Ross B. Girshick
Ali Farhadi
SSL
92
2,875
0
19 Nov 2015
Adversarial Autoencoders
Adversarial Autoencoders
Alireza Makhzani
Jonathon Shlens
Navdeep Jaitly
Ian Goodfellow
Brendan J. Frey
GAN
89
2,228
0
18 Nov 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,681
0
21 Dec 2014
Building high-level features using large scale unsupervised learning
Building high-level features using large scale unsupervised learning
Quoc V. Le
MarcÁurelio Ranzato
R. Monga
M. Devin
Kai Chen
G. Corrado
J. Dean
A. Ng
SSLOffRLCVBM
119
2,271
0
29 Dec 2011
1