Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.02246
Cited By
Improving the Privacy and Accuracy of ADMM-Based Distributed Algorithms
6 June 2018
Xueru Zhang
Mohammad Mahdi Khalili
M. Liu
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving the Privacy and Accuracy of ADMM-Based Distributed Algorithms"
20 / 20 papers shown
Title
Privacy Amplification by Iteration for ADMM with (Strongly) Convex Objective Functions
T.-H. Hubert Chan
Hao Xie
Mengshi Zhao
53
1
0
14 Dec 2023
Topology-Dependent Privacy Bound For Decentralized Federated Learning
Qiongxiu Li
Wenrui Yu
Changlong Ji
Richard Heusdens
37
3
0
13 Dec 2023
From Noisy Fixed-Point Iterations to Private ADMM for Centralized and Federated Learning
Edwige Cyffers
A. Bellet
D. Basu
FedML
39
5
0
24 Feb 2023
Differentially Private Decentralized Optimization with Relay Communication
Luqing Wang
Luyao Guo
Shaofu Yang
Xinli Shi
38
0
0
21 Dec 2022
Differentially Private ADMM-Based Distributed Discrete Optimal Transport for Resource Allocation
Jason Hughes
Juntao Chen
OT
26
1
0
30 Nov 2022
FedGiA: An Efficient Hybrid Algorithm for Federated Learning
Shenglong Zhou
Geoffrey Ye Li
FedML
38
16
0
03 May 2022
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive Survey
Shangwei Guo
Xu Zhang
Feiyu Yang
Tianwei Zhang
Yan Gan
Tao Xiang
Yang Liu
FedML
36
9
0
19 Dec 2021
Communication-Efficient ADMM-based Federated Learning
Shenglong Zhou
Geoffrey Ye Li
FedML
40
22
0
28 Oct 2021
Fair Sequential Selection Using Supervised Learning Models
Mohammad Mahdi Khalili
Xueru Zhang
Mahed Abroshan
FaML
36
20
0
26 Oct 2021
Encrypted Distributed Lasso for Sparse Data Predictive Control
A. Alexandru
Anastasios Tsiamis
George J. Pappas
17
10
0
23 Apr 2021
Privacy-preserving Decentralized Aggregation for Federated Learning
Beomyeol Jeon
S. Ferdous
Muntasir Raihan Rahman
A. Walid
FedML
33
52
0
13 Dec 2020
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
54
39
0
09 Dec 2020
Privacy-Preserving Distributed Processing: Metrics, Bounds, and Algorithms
Qiongxiu Li
Jaron Skovsted Gundersen
Richard Heusdens
M. G. Christensen
19
33
0
02 Sep 2020
Topology-aware Differential Privacy for Decentralized Image Classification
Shangwei Guo
Tianwei Zhang
Guowen Xu
Hanzhou Yu
Tao Xiang
Yang Liu
27
18
0
14 Jun 2020
Privacy-preserving Incremental ADMM for Decentralized Consensus Optimization
Yu Ye
Hao Chen
Ming Xiao
Mikael Skoglund
H. Vincent Poor
31
28
0
24 Mar 2020
Recycled ADMM: Improving the Privacy and Accuracy of Distributed Algorithms
Xueru Zhang
Mohammad Mahdi Khalili
M. Liu
FedML
15
23
0
08 Oct 2019
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
11
217
0
15 May 2019
Differentially Private ADMM for Distributed Medical Machine Learning
Jiahao Ding
Xiaoqi Qin
Wenjun Xu
Yanmin Gong
Zhu Han
Miao Pan
FedML
39
20
0
07 Jan 2019
Recycled ADMM: Improve Privacy and Accuracy with Less Computation in Distributed Algorithms
Xueru Zhang
Mohammad Mahdi Khalili
M. Liu
39
30
0
07 Oct 2018
DP-ADMM: ADMM-based Distributed Learning with Differential Privacy
Zonghao Huang
Rui Hu
Yuanxiong Guo
Eric Chan-Tin
Yanmin Gong
FedML
22
194
0
30 Aug 2018
1