ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01879
  4. Cited By
An explicit analysis of the entropic penalty in linear programming

An explicit analysis of the entropic penalty in linear programming

5 June 2018
Jonathan Niles-Weed
ArXivPDFHTML

Papers citing "An explicit analysis of the entropic penalty in linear programming"

8 / 8 papers shown
Title
Revisiting Online Learning Approach to Inverse Linear Optimization: A Fenchel$-$Young Loss Perspective and Gap-Dependent Regret Analysis
Revisiting Online Learning Approach to Inverse Linear Optimization: A Fenchel−-−Young Loss Perspective and Gap-Dependent Regret Analysis
Shinsaku Sakaue
Han Bao
Taira Tsuchiya
45
2
0
23 Jan 2025
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Xun Tang
Michael Shavlovsky
Holakou Rahmanian
Elisa Tardini
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
OT
41
4
0
20 Jan 2024
Efficient and Accurate Optimal Transport with Mirror Descent and Conjugate Gradients
Efficient and Accurate Optimal Transport with Mirror Descent and Conjugate Gradients
Mete Kemertas
Allan D. Jepson
Amir-massoud Farahmand
OT
58
3
0
17 Jul 2023
Convergence rate of Tsallis entropic regularized optimal transport
Convergence rate of Tsallis entropic regularized optimal transport
T. Suguro
Toshiaki Yachimura
OT
36
0
0
13 Apr 2023
Asymptotics for semi-discrete entropic optimal transport
Asymptotics for semi-discrete entropic optimal transport
Jason M. Altschuler
Jonathan Niles-Weed
Austin J. Stromme
19
27
0
22 Jun 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
48
66
0
15 Feb 2021
Stronger and Faster Wasserstein Adversarial Attacks
Stronger and Faster Wasserstein Adversarial Attacks
Kaiwen Wu
Allen Wang
Yaoliang Yu
AAML
22
32
0
06 Aug 2020
Regularized Optimal Transport and the Rot Mover's Distance
Regularized Optimal Transport and the Rot Mover's Distance
Arnaud Dessein
Nicolas Papadakis
Jean-Luc Rouas
OT
56
84
0
20 Oct 2016
1