Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.01796
Cited By
Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate
5 June 2018
Mor Shpigel Nacson
Nathan Srebro
Daniel Soudry
FedML
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate"
22 / 22 papers shown
Title
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Chenyang Zhang
Peifeng Gao
Difan Zou
Yuan Cao
OOD
MLT
59
0
0
11 Apr 2025
The Implicit Bias of Batch Normalization in Linear Models and Two-layer Linear Convolutional Neural Networks
Yuan Cao
Difan Zou
Yuan-Fang Li
Quanquan Gu
MLT
37
5
0
20 Jun 2023
Implicit Bias of Gradient Descent for Logistic Regression at the Edge of Stability
Jingfeng Wu
Vladimir Braverman
Jason D. Lee
29
17
0
19 May 2023
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
23
8
0
19 Sep 2022
On the Implicit Bias in Deep-Learning Algorithms
Gal Vardi
FedML
AI4CE
34
72
0
26 Aug 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Robust Training under Label Noise by Over-parameterization
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
NoLa
OOD
27
106
0
28 Feb 2022
Stability vs Implicit Bias of Gradient Methods on Separable Data and Beyond
Matan Schliserman
Tomer Koren
24
23
0
27 Feb 2022
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
34
10
0
31 Dec 2021
On the Power of Differentiable Learning versus PAC and SQ Learning
Emmanuel Abbe
Pritish Kamath
Eran Malach
Colin Sandon
Nathan Srebro
MLT
77
23
0
09 Aug 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
24
194
0
06 May 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
27
93
0
02 Mar 2021
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks
Bohan Wang
Qi Meng
Wei Chen
Tie-Yan Liu
24
33
0
11 Dec 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
28
3
0
19 Jun 2020
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad
Jose Gallego
Aaron Mishkin
Simon Lacoste-Julien
Nicolas Le Roux
26
8
0
11 Jun 2020
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
32
214
0
03 Dec 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
43
321
0
13 Jun 2019
Lexicographic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models
Mor Shpigel Nacson
Suriya Gunasekar
J. Lee
Nathan Srebro
Daniel Soudry
27
91
0
17 May 2019
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
24
446
0
21 Nov 2018
Condition Number Analysis of Logistic Regression, and its Implications for Standard First-Order Solution Methods
R. Freund
Paul Grigas
Rahul Mazumder
20
10
0
20 Oct 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
24
131
0
14 Aug 2018
When Will Gradient Methods Converge to Max-margin Classifier under ReLU Models?
Tengyu Xu
Yi Zhou
Kaiyi Ji
Yingbin Liang
29
19
0
12 Jun 2018
1