Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.00811
Cited By
Causal Inference with Noisy and Missing Covariates via Matrix Factorization
3 June 2018
Nathan Kallus
Xiaojie Mao
Madeleine Udell
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causal Inference with Noisy and Missing Covariates via Matrix Factorization"
32 / 32 papers shown
Title
DeCaFlow: A Deconfounding Causal Generative Model
Alejandro Almodóvar
Adrián Javaloy
J. Parras
Santiago Zazo
Isabel Valera
CML
39
0
0
19 Mar 2025
Causal Inference with Latent Variables: Recent Advances and Future Prospectives
Yaochen Zhu
Yinhan He
Jing Ma
Mengxuan Hu
Sheng Li
Jundong Li
CML
43
3
0
20 Jun 2024
Disentangled Latent Representation Learning for Tackling the Confounding M-Bias Problem in Causal Inference
Debo Cheng
Yang Xie
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
Yinghao Zhang
Zaiwen Feng
CML
BDL
23
1
0
08 Dec 2023
Debiasing Multimodal Models via Causal Information Minimization
Vaidehi Patil
A. Maharana
Mohit Bansal
CML
38
2
0
28 Nov 2023
Estimating Treatment Effects from Irregular Time Series Observations with Hidden Confounders
Defu Cao
James Enouen
Yujing Wang
Xiangchen Song
Chuizheng Meng
Hao Niu
Yan Liu
CML
35
21
0
04 Mar 2023
Estimating Treatment Effects in Continuous Time with Hidden Confounders
Defu Cao
James Enouen
Yong-Jin Liu
CML
35
2
0
19 Feb 2023
Causal Inference (C-inf) -- asymmetric scenario of typical phase transitions
A. Capponi
M. Stojnic
43
4
0
02 Jan 2023
Causal Inference (C-inf) -- closed form worst case typical phase transitions
A. Capponi
M. Stojnic
21
2
0
02 Jan 2023
Variational Temporal Deconfounder for Individualized Treatment Effect Estimation from Longitudinal Observational Data
Zheng Feng
M. Prosperi
Jiang Bian
CML
21
0
0
23 Jul 2022
Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach
Yuchen Zhu
Limor Gultchin
Arthur Gretton
Matt J. Kusner
Ricardo M. A. Silva
CML
13
15
0
18 Jun 2022
Partial Identification with Noisy Covariates: A Robust Optimization Approach
Wenshuo Guo
Mingzhang Yin
Yixin Wang
Michael I. Jordan
31
19
0
22 Feb 2022
Evaluation Methods and Measures for Causal Learning Algorithms
Lu Cheng
Ruocheng Guo
Raha Moraffah
Paras Sheth
K. S. Candan
Huan Liu
CML
ELM
24
51
0
07 Feb 2022
To Impute or not to Impute? Missing Data in Treatment Effect Estimation
Jeroen Berrevoets
F. Imrie
T. Kyono
James Jordon
M. Schaar
28
18
0
04 Feb 2022
Deep Treatment-Adaptive Network for Causal Inference
Qian Li
Zhichao Wang
Shaowu Liu
Gang Li
Guandong Xu
CML
BDL
OOD
27
10
0
27 Dec 2021
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
50
21
0
06 Dec 2021
Causal Matrix Completion
Anish Agarwal
M. Dahleh
Devavrat Shah
Dennis Shen
CML
48
51
0
30 Sep 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
30
3
0
30 Sep 2021
Conservative Policy Construction Using Variational Autoencoders for Logged Data with Missing Values
Mahed Abroshan
K. H. Yip
Cem Tekin
Mihaela van der Schaar
CML
OffRL
24
3
0
08 Sep 2021
Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects
Yao Zhang
Jeroen Berrevoets
M. Schaar
CML
36
5
0
06 Aug 2021
Matrix Completion with Model-free Weighting
Jiayi Wang
R. K. Wong
Xiaojun Mao
Kwun Chuen Gary Chan
29
5
0
09 Jun 2021
Entropy Minimizing Matrix Factorization
Mulin. Chen
Xuelong Li
32
6
0
24 Mar 2021
Intact-VAE: Estimating Treatment Effects under Unobserved Confounding
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
16
13
0
17 Jan 2021
How and Why to Use Experimental Data to Evaluate Methods for Observational Causal Inference
A. Gentzel
Purva Pruthi
David D. Jensen
CML
18
18
0
06 Oct 2020
Causal Inference in Possibly Nonlinear Factor Models
Yingjie Feng
CML
9
7
0
31 Aug 2020
Off-policy Evaluation in Infinite-Horizon Reinforcement Learning with Latent Confounders
Andrew Bennett
Nathan Kallus
Lihong Li
Ali Mousavi
OffRL
35
43
0
27 Jul 2020
ParKCa: Causal Inference with Partially Known Causes
Raquel Y. S. Aoki
Martin Ester
CML
16
4
0
17 Mar 2020
MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models
Imke Mayer
Julie Josse
Félix Raimundo
Jean-Philippe Vert
CML
29
12
0
25 Feb 2020
Optimal Experimental Design for Staggered Rollouts
Ruoxuan Xiong
Susan Athey
Mohsen Bayati
Guido Imbens
23
38
0
09 Nov 2019
Policy Evaluation with Latent Confounders via Optimal Balance
Andrew Bennett
Nathan Kallus
CML
19
18
0
06 Aug 2019
Adapting Text Embeddings for Causal Inference
Victor Veitch
Dhanya Sridhar
David M. Blei
CML
14
21
0
29 May 2019
Imputation and low-rank estimation with Missing Not At Random data
Aude Sportisse
Claire Boyer
Julie Josse
25
47
0
29 Dec 2018
Cause-Effect Deep Information Bottleneck For Systematically Missing Covariates
S. Parbhoo
Mario Wieser
Aleksander Wieczorek
Volker Roth
CML
14
5
0
06 Jul 2018
1