Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.00720
Cited By
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
3 June 2018
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression"
37 / 37 papers shown
Title
Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions
Gledson Rodrigo Tondo
I. Kavrakov
Guido Morgenthal
55
2
0
13 Mar 2025
Decentralized Online Ensembles of Gaussian Processes for Multi-Agent Systems
Fernando Llorente
Daniel Waxman
Petar M. Djurić
43
0
0
07 Feb 2025
GPTreeO: An R package for continual regression with dividing local Gaussian processes
Timo Braun
Anders Kvellestad
Riccardo De Bin
18
0
0
01 Oct 2024
Gaussian Process Upper Confidence Bounds in Distributed Point Target Tracking over Wireless Sensor Networks
Xingchi Liu
Lyudmila Mihaylova
Jemin George
T. Pham
40
9
0
11 Sep 2024
Aggregation Models with Optimal Weights for Distributed Gaussian Processes
Liam Hebert
Sukhdeep S. Sodhi
27
0
0
01 Aug 2024
3D Uncertain Implicit Surface Mapping using GMM and GP
Qianqian Zou
Monika Sester
3DV
28
1
0
12 Mar 2024
A Bayesian Committee Machine Potential for Oxygen-containing Organic Compounds
Seungwon Kim
D. C. Yang
S. Y. Willow
Chang Woo Myung
20
0
0
02 Mar 2024
Whom to Trust? Elective Learning for Distributed Gaussian Process Regression
Zewen Yang
X. Dai
Akshat Dubey
Sandra Hirche
Georges Hattab
20
10
0
05 Feb 2024
Calibrated One Round Federated Learning with Bayesian Inference in the Predictive Space
Mohsin Hasan
Guojun Zhang
Kaiyang Guo
Xi Chen
Pascal Poupart
FedML
34
9
0
15 Dec 2023
Resource-Efficient Cooperative Online Scalar Field Mapping via Distributed Sparse Gaussian Process Regression
Tianyi Ding
Ronghao Zheng
Senlin Zhang
Meiqin Liu
28
1
0
19 Sep 2023
Leveraging Locality and Robustness to Achieve Massively Scalable Gaussian Process Regression
Robert Allison
Anthony Stephenson
F. Samuel
Edward O. Pyzer-Knapp
UQCV
17
3
0
26 Jun 2023
Bayesian data fusion with shared priors
Peng Wu
Tales Imbiriba
Victor Elvira
Pau Closas
FedML
34
6
0
14 Dec 2022
Gaussian Process Mapping of Uncertain Building Models with GMM as Prior
Qianqian Zou
C. Brenner
Monika Sester
16
2
0
14 Dec 2022
Entry Dependent Expert Selection in Distributed Gaussian Processes Using Multilabel Classification
Hamed Jalali
Gjergji Kasneci
16
0
0
17 Nov 2022
Hierarchical Policy Blending as Inference for Reactive Robot Control
Kay Hansel
Julen Urain
Jan Peters
Georgia Chalvatzaki
37
15
0
14 Oct 2022
Mixtures of Gaussian Process Experts with SMC
2
^2
2
Teemu Härkönen
S. Wade
K. Law
L. Roininen
14
2
0
26 Aug 2022
Fully Decentralized, Scalable Gaussian Processes for Multi-Agent Federated Learning
George P. Kontoudis
D. Stilwell
FedML
8
8
0
06 Mar 2022
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Haitao Liu
Kai Wu
Yew-Soon Ong
Chao Bian
Xiaomo Jiang
Xiaofang Wang
19
7
0
25 Feb 2022
Gaussian Graphical Models as an Ensemble Method for Distributed Gaussian Processes
Hamed Jalali
Gjergji Kasneci
FedML
19
0
0
07 Feb 2022
Correlated Product of Experts for Sparse Gaussian Process Regression
Manuel Schürch
Dario Azzimonti
A. Benavoli
Marco Zaffalon
16
12
0
17 Dec 2021
Learning with Subset Stacking
Ilker Birbil
S. Yıldırım
Kaya Gökalp
Hakan Akyüz
23
0
0
12 Dec 2021
Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems
Haitao Liu
Changjun Liu
Xiaomo Jiang
Xudong Chen
Shuhua Yang
Xiaofang Wang
BDL
AI4TS
32
2
0
03 Jun 2021
Lightweight Distributed Gaussian Process Regression for Online Machine Learning
Zhenyuan Yuan
Minghui Zhu
21
4
0
11 May 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
35
30
0
18 Mar 2021
Temporal Gaussian Process Regression in Logarithmic Time
Adrien Corenflos
Zheng Zhao
Simo Särkkä
17
3
0
19 Feb 2021
Healing Products of Gaussian Processes
Samuel N. Cohen
R. Mbuvha
T. Marwala
M. Deisenroth
GP
16
0
0
14 Feb 2021
Gaussian Experts Selection using Graphical Models
Hamed Jalali
Martin Pawelczyk
Gjerji Kasneci
14
3
0
02 Feb 2021
Aggregating Dependent Gaussian Experts in Local Approximation
Hamed Jalali
Gjergji Kasneci
19
4
0
17 Oct 2020
Modulating Scalable Gaussian Processes for Expressive Statistical Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
13
4
0
29 Aug 2020
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
12
8
0
18 May 2020
Financial Applications of Gaussian Processes and Bayesian Optimization
Joan Gonzalvez
Edmond Lezmi
T. Roncalli
Jiali Xu
20
54
0
12 Mar 2019
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
21
26
0
03 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
27
24
0
03 Nov 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
16
681
0
03 Jul 2018
Embarrassingly Parallel Inference for Gaussian Processes
M. Zhang
Sinead Williamson
18
24
0
27 Feb 2017
Cluster-based Kriging Approximation Algorithms for Complexity Reduction
Bas van Stein
Hao Wang
W. Kowalczyk
M. Emmerich
Thomas Bäck
46
45
0
04 Feb 2017
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
71
169
0
29 May 2012
1