Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.00553
Cited By
Deep Curiosity Search: Intra-Life Exploration Can Improve Performance on Challenging Deep Reinforcement Learning Problems
1 June 2018
C. Stanton
Jeff Clune
LRM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Curiosity Search: Intra-Life Exploration Can Improve Performance on Challenging Deep Reinforcement Learning Problems"
11 / 11 papers shown
Title
Goal Exploration via Adaptive Skill Distribution for Goal-Conditioned Reinforcement Learning
Lisheng Wu
Ke Chen
34
0
0
19 Apr 2024
Exploration via Elliptical Episodic Bonuses
Mikael Henaff
Roberta Raileanu
Minqi Jiang
Tim Rocktaschel
OffRL
35
40
0
11 Oct 2022
An information-theoretic perspective on intrinsic motivation in reinforcement learning: a survey
A. Aubret
L. Matignon
S. Hassas
42
35
0
19 Sep 2022
Exploration in Deep Reinforcement Learning: A Survey
Pawel Ladosz
Lilian Weng
Minwoo Kim
H. Oh
OffRL
31
324
0
02 May 2022
Evolving Neural Networks with Optimal Balance between Information Flow and Connections Cost
A. Khalili
A. Bouchachia
17
0
0
12 Feb 2022
Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain
Jianye Hao
Tianpei Yang
Hongyao Tang
Chenjia Bai
Jinyi Liu
Zhaopeng Meng
Peng Liu
Zhen Wang
OffRL
41
93
0
14 Sep 2021
Active Reinforcement Learning over MDPs
Qi Yang
Peng Yang
K. Tang
46
0
0
05 Aug 2021
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
352
0
27 Apr 2020
A Survey of Deep Reinforcement Learning in Video Games
Kun Shao
Zhentao Tang
Yuanheng Zhu
Nannan Li
Dongbin Zhao
OffRL
AI4TS
43
188
0
23 Dec 2019
AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence
Jeff Clune
17
116
0
27 May 2019
Go-Explore: a New Approach for Hard-Exploration Problems
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
AI4TS
24
363
0
30 Jan 2019
1