ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.00413
  4. Cited By
Global linear convergence of Newton's method without strong-convexity or
  Lipschitz gradients

Global linear convergence of Newton's method without strong-convexity or Lipschitz gradients

1 June 2018
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
ArXivPDFHTML

Papers citing "Global linear convergence of Newton's method without strong-convexity or Lipschitz gradients"

11 / 11 papers shown
Title
Second-order Conditional Gradient Sliding
Second-order Conditional Gradient Sliding
Alejandro Carderera
Sebastian Pokutta
50
13
0
20 Feb 2020
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Tianxiao Sun
Quoc Tran-Dinh
54
61
0
14 Mar 2017
CoCoA: A General Framework for Communication-Efficient Distributed
  Optimization
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith
Simone Forte
Chenxin Ma
Martin Takáč
Michael I. Jordan
Martin Jaggi
66
273
0
07 Nov 2016
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
209
3,202
0
15 Jun 2016
Second-Order Stochastic Optimization for Machine Learning in Linear Time
Second-Order Stochastic Optimization for Machine Learning in Linear Time
Naman Agarwal
Brian Bullins
Elad Hazan
ODL
46
102
0
12 Feb 2016
Practical Inexact Proximal Quasi-Newton Method with Global Complexity
  Analysis
Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis
K. Scheinberg
Xiaocheng Tang
68
82
0
26 Nov 2013
Non-strongly-convex smooth stochastic approximation with convergence
  rate O(1/n)
Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)
Francis R. Bach
Eric Moulines
87
405
0
10 Jun 2013
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
178
4,251
0
04 Jun 2013
Adaptivity of averaged stochastic gradient descent to local strong
  convexity for logistic regression
Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression
Francis R. Bach
75
164
0
25 Mar 2013
Self-concordant analysis for logistic regression
Self-concordant analysis for logistic regression
Francis R. Bach
177
208
0
24 Oct 2009
Robust Regression and Lasso
Robust Regression and Lasso
Huan Xu
Constantine Caramanis
Shie Mannor
OOD
86
302
0
11 Nov 2008
1