Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.00413
Cited By
Global linear convergence of Newton's method without strong-convexity or Lipschitz gradients
1 June 2018
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Global linear convergence of Newton's method without strong-convexity or Lipschitz gradients"
11 / 11 papers shown
Title
Second-order Conditional Gradient Sliding
Alejandro Carderera
Sebastian Pokutta
50
13
0
20 Feb 2020
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Tianxiao Sun
Quoc Tran-Dinh
54
61
0
14 Mar 2017
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith
Simone Forte
Chenxin Ma
Martin Takáč
Michael I. Jordan
Martin Jaggi
66
273
0
07 Nov 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
209
3,202
0
15 Jun 2016
Second-Order Stochastic Optimization for Machine Learning in Linear Time
Naman Agarwal
Brian Bullins
Elad Hazan
ODL
46
102
0
12 Feb 2016
Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis
K. Scheinberg
Xiaocheng Tang
68
82
0
26 Nov 2013
Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)
Francis R. Bach
Eric Moulines
87
405
0
10 Jun 2013
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
178
4,251
0
04 Jun 2013
Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression
Francis R. Bach
75
164
0
25 Mar 2013
Self-concordant analysis for logistic regression
Francis R. Bach
177
208
0
24 Oct 2009
Robust Regression and Lasso
Huan Xu
Constantine Caramanis
Shie Mannor
OOD
86
302
0
11 Nov 2008
1