ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.00179
  4. Cited By
The Nonlinearity Coefficient - Predicting Generalization in Deep Neural
  Networks

The Nonlinearity Coefficient - Predicting Generalization in Deep Neural Networks

1 June 2018
George Philipp
J. Carbonell
ArXivPDFHTML

Papers citing "The Nonlinearity Coefficient - Predicting Generalization in Deep Neural Networks"

4 / 4 papers shown
Title
A Learning Paradigm for Interpretable Gradients
A Learning Paradigm for Interpretable Gradients
Felipe Figueroa
Hanwei Zhang
R. Sicre
Yannis Avrithis
Stéphane Ayache
FAtt
23
0
0
23 Apr 2024
Tensor Programs III: Neural Matrix Laws
Tensor Programs III: Neural Matrix Laws
Greg Yang
14
43
0
22 Sep 2020
Tensor Programs II: Neural Tangent Kernel for Any Architecture
Tensor Programs II: Neural Tangent Kernel for Any Architecture
Greg Yang
58
134
0
25 Jun 2020
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
244
349
0
14 Jun 2018
1