Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.00102
Cited By
Respond-CAM: Analyzing Deep Models for 3D Imaging Data by Visualizations
31 May 2018
Guannan Zhao
Bo Zhou
Kaiwen Wang
Rui Jiang
Min Xu
FAtt
MedIm
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Respond-CAM: Analyzing Deep Models for 3D Imaging Data by Visualizations"
8 / 8 papers shown
Title
DARE: Towards Robust Text Explanations in Biomedical and Healthcare Applications
Adam Ivankay
Mattia Rigotti
P. Frossard
OOD
MedIm
29
1
0
05 Jul 2023
Explainable AI for Bioinformatics: Methods, Tools, and Applications
Md. Rezaul Karim
Tanhim Islam
Oya Beyan
Christoph Lange
Michael Cochez
Dietrich-Rebholz Schuhmann
Stefan Decker
29
68
0
25 Dec 2022
Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Zohaib Salahuddin
Henry C. Woodruff
A. Chatterjee
Philippe Lambin
24
303
0
01 Nov 2021
BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer Diagnosis in Breast Ultrasound Images
Boyu Zhang
Aleksandar Vakanski
Min Xian
27
11
0
05 Oct 2021
Quantifying Explainability of Saliency Methods in Deep Neural Networks with a Synthetic Dataset
Erico Tjoa
Cuntai Guan
XAI
FAtt
16
27
0
07 Sep 2020
An Adversarial Approach for Explaining the Predictions of Deep Neural Networks
Arash Rahnama
A.-Yu Tseng
FAtt
AAML
FaML
17
5
0
20 May 2020
Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions
F. Altaf
Syed Mohammed Shamsul Islam
Naveed Akhtar
N. Janjua
OOD
29
200
0
15 Feb 2019
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
334
10,621
0
19 Feb 2017
1