Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.12152
Cited By
Robustness May Be at Odds with Accuracy
30 May 2018
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
A. Madry
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robustness May Be at Odds with Accuracy"
50 / 423 papers shown
Title
Adversarial Robustness for Unified Multi-Modal Encoders via Efficient Calibration
Chih-Ting Liao
Bin Ren
Guofeng Mei
Xu Zheng
AAML
12
0
0
17 May 2025
Data-Agnostic Augmentations for Unknown Variations: Out-of-Distribution Generalisation in MRI Segmentation
Puru Vaish
Felix Meister
Tobias Heimann
Christoph Brune
J. Wolterink
OOD
24
0
0
15 May 2025
RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow, Scene Flow and Stereo
Jenny Schmalfuss
Victor Oei
Lukas Mehl
Madlen Bartsch
Shashank Agnihotri
M. Keuper
Andrés Bruhn
31
0
0
14 May 2025
X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP
Hanxun Huang
Sarah Monazam Erfani
Yige Li
Xingjun Ma
James Bailey
AAML
55
0
0
08 May 2025
Risk Analysis and Design Against Adversarial Actions
M. Campi
A. Carè
Luis G. Crespo
S. Garatti
Federico A. Ramponi
AAML
192
0
0
02 May 2025
Severing Spurious Correlations with Data Pruning
Varun Mulchandani
Jung-Eun Kim
222
0
0
24 Mar 2025
HALO: Robust Out-of-Distribution Detection via Joint Optimisation
Hugo Lyons Keenan
S. Erfani
Christopher Leckie
OODD
214
0
0
27 Feb 2025
Universal Sparse Autoencoders: Interpretable Cross-Model Concept Alignment
Harrish Thasarathan
Julian Forsyth
Thomas Fel
M. Kowal
Konstantinos G. Derpanis
111
7
0
06 Feb 2025
On the uncertainty principle of neural networks
Jun-Jie Zhang
Dong-xiao Zhang
Jian-Nan Chen
L. Pang
Deyu Meng
57
2
0
17 Jan 2025
A High Dimensional Statistical Model for Adversarial Training: Geometry and Trade-Offs
Kasimir Tanner
Matteo Vilucchio
Bruno Loureiro
Florent Krzakala
AAML
63
0
0
31 Dec 2024
Adversarial Detection with a Dynamically Stable System
Xiaowei Long
Jie Lin
Xiangyuan Yang
AAML
41
0
0
11 Nov 2024
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
Tejaswini Medi
Steffen Jung
M. Keuper
AAML
44
3
0
30 Oct 2024
Robust Feature Learning for Multi-Index Models in High Dimensions
Alireza Mousavi-Hosseini
Adel Javanmard
Murat A. Erdogdu
OOD
AAML
48
1
0
21 Oct 2024
Efficient Optimization Algorithms for Linear Adversarial Training
Antônio H. Ribeiro
Thomas B. Schon
Dave Zahariah
Francis Bach
AAML
55
1
0
16 Oct 2024
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Binghui Li
Yuanzhi Li
OOD
41
2
0
11 Oct 2024
Enhancing adversarial robustness in Natural Language Inference using explanations
Alexandros Koulakos
Maria Lymperaiou
Giorgos Filandrianos
Giorgos Stamou
SILM
AAML
43
0
0
11 Sep 2024
Deepfake Media Forensics: State of the Art and Challenges Ahead
Irene Amerini
Mauro Barni
Sebastiano Battiato
Paolo Bestagini
Giulia Boato
...
Davide Salvi
Stefano Tubaro
Claudia Melis Tonti
Massimo Villari
D. Vitulano
AAML
51
5
0
01 Aug 2024
Adversarial Robustification via Text-to-Image Diffusion Models
Daewon Choi
Jongheon Jeong
Huiwon Jang
Jinwoo Shin
DiffM
47
1
0
26 Jul 2024
Adversaries With Incentives: A Strategic Alternative to Adversarial Robustness
Maayan Ehrenberg
Roy Ganz
Nir Rosenfeld
AAML
56
0
0
17 Jun 2024
Exploiting the Layered Intrinsic Dimensionality of Deep Models for Practical Adversarial Training
Enes Altinisik
Safa Messaoud
Husrev Taha Sencar
Hassan Sajjad
Sanjay Chawla
AAML
48
0
0
27 May 2024
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
Nils Philipp Walter
Linara Adilova
Jilles Vreeken
Michael Kamp
AAML
51
2
0
27 May 2024
LookHere: Vision Transformers with Directed Attention Generalize and Extrapolate
A. Fuller
Daniel G. Kyrollos
Yousef Yassin
James R. Green
54
2
0
22 May 2024
Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
Eslam Zaher
Maciej Trzaskowski
Quan Nguyen
Fred Roosta
AAML
29
4
0
16 May 2024
H
H
H
-Consistency Guarantees for Regression
Anqi Mao
M. Mohri
Yutao Zhong
33
9
0
28 Mar 2024
Bidirectional Consistency Models
Liangchen Li
Jiajun He
DiffM
72
12
0
26 Mar 2024
DD-RobustBench: An Adversarial Robustness Benchmark for Dataset Distillation
Yifan Wu
Jiawei Du
Ping Liu
Yuewei Lin
Wenqing Cheng
Wei-ping Xu
DD
AAML
42
5
0
20 Mar 2024
Robust Overfitting Does Matter: Test-Time Adversarial Purification With FGSM
Linyu Tang
Lei Zhang
AAML
35
3
0
18 Mar 2024
Rethinking Invariance Regularization in Adversarial Training to Improve Robustness-Accuracy Trade-off
Futa Waseda
Ching-Chun Chang
Isao Echizen
AAML
36
0
0
22 Feb 2024
Theoretical Understanding of Learning from Adversarial Perturbations
Soichiro Kumano
Hiroshi Kera
Toshihiko Yamasaki
AAML
46
1
0
16 Feb 2024
Accelerated Smoothing: A Scalable Approach to Randomized Smoothing
Devansh Bhardwaj
Kshitiz Kaushik
Sarthak Gupta
AAML
37
0
0
12 Feb 2024
Is Adversarial Training with Compressed Datasets Effective?
Tong Chen
Raghavendra Selvan
AAML
62
0
0
08 Feb 2024
Conserve-Update-Revise to Cure Generalization and Robustness Trade-off in Adversarial Training
Shruthi Gowda
Bahram Zonooz
Elahe Arani
AAML
31
2
0
26 Jan 2024
Mathematical Algorithm Design for Deep Learning under Societal and Judicial Constraints: The Algorithmic Transparency Requirement
Holger Boche
Adalbert Fono
Gitta Kutyniok
FaML
33
4
0
18 Jan 2024
Perturbation-Invariant Adversarial Training for Neural Ranking Models: Improving the Effectiveness-Robustness Trade-Off
Yuansan Liu
Ruqing Zhang
Mingkun Zhang
Wei Chen
Maarten de Rijke
J. Guo
Xueqi Cheng
AAML
32
6
0
16 Dec 2023
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
47
2
0
07 Dec 2023
k* Distribution: Evaluating the Latent Space of Deep Neural Networks using Local Neighborhood Analysis
Shashank Kotyan
Tatsuya Ueda
Danilo Vasconcellos Vargas
32
1
0
07 Dec 2023
Indirect Gradient Matching for Adversarial Robust Distillation
Hongsin Lee
Seungju Cho
Changick Kim
AAML
FedML
53
2
0
06 Dec 2023
Improving Feature Stability during Upsampling -- Spectral Artifacts and the Importance of Spatial Context
Shashank Agnihotri
Julia Grabinski
M. Keuper
30
6
0
29 Nov 2023
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Yatong Bai
Brendon G. Anderson
Somayeh Sojoudi
AAML
35
2
0
26 Nov 2023
Balance, Imbalance, and Rebalance: Understanding Robust Overfitting from a Minimax Game Perspective
Yifei Wang
Liangchen Li
Jiansheng Yang
Zhouchen Lin
Yisen Wang
33
11
0
30 Oct 2023
PubDef: Defending Against Transfer Attacks From Public Models
Chawin Sitawarin
Jaewon Chang
David Huang
Wesson Altoyan
David Wagner
AAML
39
6
0
26 Oct 2023
Theoretically Grounded Loss Functions and Algorithms for Score-Based Multi-Class Abstention
Anqi Mao
M. Mohri
Yutao Zhong
32
22
0
23 Oct 2023
Training Image Derivatives: Increased Accuracy and Universal Robustness
V. Avrutskiy
51
0
0
21 Oct 2023
Generating Less Certain Adversarial Examples Improves Robust Generalization
Minxing Zhang
Michael Backes
Xiao Zhang
AAML
40
1
0
06 Oct 2023
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Ambar Pal
Huaijin Hao
Rene Vidal
26
8
0
28 Sep 2023
Turn Fake into Real: Adversarial Head Turn Attacks Against Deepfake Detection
Weijie Wang
Zhengyu Zhao
N. Sebe
Bruno Lepri
AAML
41
2
0
03 Sep 2023
Input margins can predict generalization too
Coenraad Mouton
Marthinus W. Theunissen
Marelie Hattingh Davel
AAML
UQCV
AI4CE
23
3
0
29 Aug 2023
Robust Linear Regression: Phase-Transitions and Precise Tradeoffs for General Norms
Elvis Dohmatob
M. Scetbon
AAML
OOD
28
0
0
01 Aug 2023
Theoretically Principled Trade-off for Stateful Defenses against Query-Based Black-Box Attacks
Ashish Hooda
Neal Mangaokar
Ryan Feng
Kassem Fawaz
S. Jha
Atul Prakash
AAML
24
3
0
30 Jul 2023
Adversarial training for tabular data with attack propagation
Tiago Leon Melo
Joao Bravo
Marco O. P. Sampaio
Paolo Romano
Hugo Ferreira
João Tiago Ascensão
P. Bizarro
AAML
27
1
0
28 Jul 2023
1
2
3
4
5
6
7
8
9
Next