Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.12002
Cited By
Why Is My Classifier Discriminatory?
30 May 2018
Irene Y. Chen
Fredrik D. Johansson
David Sontag
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Why Is My Classifier Discriminatory?"
50 / 73 papers shown
Title
AI LEGO: Scaffolding Cross-Functional Collaboration in Industrial Responsible AI Practices during Early Design Stages
Muzhe Wu
Yanzhi Zhao
Shuyi Han
Michael Xieyang Liu
Hong Shen
24
0
0
15 May 2025
A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs
Yihan Lin
Zhirong Bella Yu
Simon Lee
SyDa
51
0
0
20 Apr 2025
Privacy-Preserving Dataset Combination
Keren Fuentes
Mimee Xu
Irene Chen
43
0
0
09 Feb 2025
Most Influential Subset Selection: Challenges, Promises, and Beyond
Yuzheng Hu
Pingbang Hu
Han Zhao
Jiaqi W. Ma
TDI
142
2
0
10 Jan 2025
Fairness without Demographics through Learning Graph of Gradients
Yingtao Luo
Zerui Li
Qiang Liu
Jun Zhu
94
0
0
31 Dec 2024
Impact of Data Distribution on Fairness Guarantees in Equitable Deep Learning
Yan Luo
Congcong Wen
Min Shi
Hao Huang
Yi Fang
Mengyu Wang
FedML
26
0
0
31 Dec 2024
Counterfactual Fairness by Combining Factual and Counterfactual Predictions
Zeyu Zhou
Tianci Liu
Ruqi Bai
Jing Gao
Murat Kocaoglu
David I. Inouye
49
2
0
03 Sep 2024
Dataset Representativeness and Downstream Task Fairness
Victor A. Borza
Andrew Estornell
Chien-Ju Ho
Bradley Malin
Yevgeniy Vorobeychik
30
0
0
28 Jun 2024
Resource-constrained Fairness
Sofie Goethals
Eoin Delaney
Brent Mittelstadt
Christopher Russell
FaML
86
1
0
03 Jun 2024
Addressing Discretization-Induced Bias in Demographic Prediction
Evan Dong
Aaron Schein
Yixin Wang
Nikhil Garg
40
3
0
27 May 2024
To Pool or Not To Pool: Analyzing the Regularizing Effects of Group-Fair Training on Shared Models
Cyrus Cousins
I. E. Kumar
Suresh Venkatasubramanian
FedML
41
1
0
29 Feb 2024
Towards Fair and Calibrated Models
Anand Brahmbhatt
Vipul Rathore
Mausam
Parag Singla
FaML
21
2
0
16 Oct 2023
When Collaborative Filtering is not Collaborative: Unfairness of PCA for Recommendations
David Liu
Jackie Baek
Tina Eliassi-Rad
29
0
0
15 Oct 2023
A Sequentially Fair Mechanism for Multiple Sensitive Attributes
Franccois Hu
Philipp Ratz
Arthur Charpentier
FaML
18
6
0
12 Sep 2023
Beyond Confidence: Reliable Models Should Also Consider Atypicality
Mert Yuksekgonul
Linjun Zhang
James Zou
Carlos Guestrin
32
20
0
29 May 2023
Choosing the Right Weights: Balancing Value, Strategy, and Noise in Recommender Systems
S. Milli
Emma Pierson
Nikhil Garg
11
9
0
27 May 2023
Diversity and Inclusion in Artificial Intelligence
Didar Zowghi
F. Rimini
19
26
0
22 May 2023
Improving Fairness in AI Models on Electronic Health Records: The Case for Federated Learning Methods
Raphael Poulain
Mirza Farhan Bin Tarek
Rahmatollah Beheshti
FedML
23
20
0
19 May 2023
Auditing and Generating Synthetic Data with Controllable Trust Trade-offs
Brian M. Belgodere
Pierre Dognin
Adam Ivankay
Igor Melnyk
Youssef Mroueh
...
Mattia Rigotti
Jerret Ross
Yair Schiff
Radhika Vedpathak
Richard A. Young
34
12
0
21 Apr 2023
Fairness-Aware Data Valuation for Supervised Learning
José P. Pombal
Pedro Saleiro
Mário A. T. Figueiredo
P. Bizarro
TDI
43
3
0
29 Mar 2023
Striving for data-model efficiency: Identifying data externalities on group performance
Esther Rolf
Ben Packer
Alex Beutel
Fernando Diaz
TDI
30
2
0
11 Nov 2022
Equalizing Credit Opportunity in Algorithms: Aligning Algorithmic Fairness Research with U.S. Fair Lending Regulation
Indra Elizabeth Kumar
Keegan E. Hines
John P. Dickerson
FaML
46
21
0
05 Oct 2022
Black-Box Audits for Group Distribution Shifts
Marc Juárez
Samuel Yeom
Matt Fredrikson
MLAU
27
4
0
08 Sep 2022
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness
Vincent Jeanselme
Maria De-Arteaga
Zhe Zhang
Jessica Barrett
Brian D. M. Tom
FaML
35
11
0
13 Aug 2022
Counterfactual Fairness with Partially Known Causal Graph
Aoqi Zuo
Susan Wei
Tongliang Liu
Bo Han
Kun Zhang
Biwei Huang
OOD
FaML
19
19
0
27 May 2022
Beyond Impossibility: Balancing Sufficiency, Separation and Accuracy
Limor Gultchin
Vincent Cohen-Addad
Sophie Giffard-Roisin
Varun Kanade
Frederik Mallmann-Trenn
29
4
0
24 May 2022
Survey on Fair Reinforcement Learning: Theory and Practice
Pratik Gajane
A. Saxena
M. Tavakol
George Fletcher
Mykola Pechenizkiy
FaML
OffRL
38
13
0
20 May 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
38
78
0
06 May 2022
Long-Tailed Recognition via Weight Balancing
Shaden Alshammari
Yu-xiong Wang
Deva Ramanan
Shu Kong
MQ
25
140
0
27 Mar 2022
Is Fairness Only Metric Deep? Evaluating and Addressing Subgroup Gaps in Deep Metric Learning
Natalie Dullerud
Karsten Roth
Kimia Hamidieh
Nicolas Papernot
Marzyeh Ghassemi
35
15
0
23 Mar 2022
Normalise for Fairness: A Simple Normalisation Technique for Fairness in Regression Machine Learning Problems
Mostafa M. Mohamed
Björn W. Schuller
19
5
0
02 Feb 2022
Learning Invariant Representations with Missing Data
Mark Goldstein
J. Jacobsen
O. Chau
A. Saporta
A. Puli
Rajesh Ranganath
Andrew C. Miller
OOD
25
5
0
01 Dec 2021
Fairness for AUC via Feature Augmentation
H. Fong
Vineet Kumar
Anay Mehrotra
Nisheeth K. Vishnoi
34
10
0
24 Nov 2021
Fair-SSL: Building fair ML Software with less data
Joymallya Chakraborty
Suvodeep Majumder
Huy Tu
SyDa
11
5
0
03 Nov 2021
Certifying Robustness to Programmable Data Bias in Decision Trees
Anna P. Meyer
Aws Albarghouthi
Loris Dántoni
27
21
0
08 Oct 2021
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
356
0
04 Oct 2021
Consider the Alternatives: Navigating Fairness-Accuracy Tradeoffs via Disqualification
G. Rothblum
G. Yona
FaML
25
1
0
02 Oct 2021
Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values
Haewon Jeong
Hao Wang
Flavio du Pin Calmon
FaML
51
33
0
21 Sep 2021
Gradual (In)Compatibility of Fairness Criteria
Corinna Hertweck
T. Raz
30
12
0
09 Sep 2021
A comparison of approaches to improve worst-case predictive model performance over patient subpopulations
Stephen R. Pfohl
Haoran Zhang
Yizhe Xu
Agata Foryciarz
Marzyeh Ghassemi
N. Shah
OOD
29
22
0
27 Aug 2021
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
196
0
12 Jul 2021
The Spotlight: A General Method for Discovering Systematic Errors in Deep Learning Models
G. dÉon
Jason dÉon
J. R. Wright
Kevin Leyton-Brown
30
74
0
01 Jul 2021
Multi-group Agnostic PAC Learnability
G. Rothblum
G. Yona
FaML
36
38
0
20 May 2021
Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset
Matthew Groh
Caleb Harris
L. Soenksen
Felix Lau
Rachel Han
Aerin Kim
A. Koochek
Omar Badri
112
184
0
20 Apr 2021
Understanding and Mitigating Accuracy Disparity in Regression
Jianfeng Chi
Yuan Tian
Geoffrey J. Gordon
Han Zhao
27
25
0
24 Feb 2021
MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning Models on MIMIC-IV Dataset
Chuizheng Meng
Loc Trinh
Nan Xu
Yan Liu
24
30
0
12 Feb 2021
Emergent Unfairness in Algorithmic Fairness-Accuracy Trade-Off Research
A. Feder Cooper
Ellen Abrams
FaML
25
60
0
01 Feb 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
103
1,383
0
14 Dec 2020
Improving the Fairness of Deep Generative Models without Retraining
Shuhan Tan
Yujun Shen
Bolei Zhou
183
59
0
09 Dec 2020
Person Perception Biases Exposed: Revisiting the First Impressions Dataset
Julio C. S. Jacques Junior
Àgata Lapedriza
Cristina Palmero
Xavier Baro
Sergio Escalera
25
11
0
30 Nov 2020
1
2
Next