Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.11659
Cited By
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
29 May 2018
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Unified Particle-Optimization Framework for Scalable Bayesian Sampling"
17 / 17 papers shown
Title
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
50
0
0
08 May 2025
Gradient-based Sample Selection for Faster Bayesian Optimization
Qiyu Wei
Haowei Wang
Zirui Cao
Songhao Wang
Richard Allmendinger
Mauricio A Álvarez
24
0
0
10 Apr 2025
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
52
1
0
30 Oct 2024
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational Inference Framework
Fangyikang Wang
Huminhao Zhu
Chao Zhang
Han Zhao
Hui Qian
24
5
0
27 Dec 2023
Discrete Langevin Sampler via Wasserstein Gradient Flow
Haoran Sun
H. Dai
Bo Dai
Haomin Zhou
Dale Schuurmans
BDL
42
19
0
29 Jun 2022
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
18
1
0
21 Nov 2021
Relative Entropy Gradient Sampler for Unnormalized Distributions
Xingdong Feng
Yuan Gao
Jian Huang
Yuling Jiao
Xu Liu
33
7
0
06 Oct 2021
Stein Variational Gradient Descent with Multiple Kernel
Qingzhong Ai
Shiyu Liu
Lirong He
Zenglin Xu
17
4
0
20 Jul 2021
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
46
93
0
22 Jun 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
G. Reinert
Yvik Swan
22
35
0
07 May 2021
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
24
22
0
25 Feb 2021
Straight-Through Estimator as Projected Wasserstein Gradient Flow
Pengyu Cheng
YooJung Choi
Yitao Liang
Dinghan Shen
Ricardo Henao
Guy Van den Broeck
22
14
0
05 Oct 2019
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
30
56
0
09 May 2019
Accelerated Flow for Probability Distributions
Amirhossein Taghvaei
P. Mehta
26
30
0
10 Jan 2019
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
12
46
0
05 Sep 2018
Policy Optimization as Wasserstein Gradient Flows
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
14
66
0
09 Aug 2018
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
32
158
0
21 Oct 2016
1