ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09901
  4. Cited By
Boolean Decision Rules via Column Generation

Boolean Decision Rules via Column Generation

24 May 2018
S. Dash
Oktay Gunluk
Dennis L. Wei
ArXivPDFHTML

Papers citing "Boolean Decision Rules via Column Generation"

32 / 32 papers shown
Title
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
79
15
0
10 Jan 2025
CURLS: Causal Rule Learning for Subgroups with Significant Treatment
  Effect
CURLS: Causal Rule Learning for Subgroups with Significant Treatment Effect
Jiehui Zhou
Linxiao Yang
Xingyu Liu
Xinyue Gu
Lin Sun
Wei Chen
CML
39
0
0
01 Jul 2024
Trust Regions for Explanations via Black-Box Probabilistic Certification
Trust Regions for Explanations via Black-Box Probabilistic Certification
Amit Dhurandhar
Swagatam Haldar
Dennis L. Wei
K. Ramamurthy
FAtt
40
2
0
17 Feb 2024
Probabilistic Truly Unordered Rule Sets
Probabilistic Truly Unordered Rule Sets
Lincen Yang
M. Leeuwen
31
0
0
18 Jan 2024
Co-creating a globally interpretable model with human input
Co-creating a globally interpretable model with human input
Rahul Nair
7
0
0
23 Jun 2023
Interpretable Differencing of Machine Learning Models
Interpretable Differencing of Machine Learning Models
Swagatam Haldar
Diptikalyan Saha
Dennis L. Wei
Rahul Nair
Elizabeth M. Daly
16
1
0
10 Jun 2023
Interpretable Regional Descriptors: Hyperbox-Based Local Explanations
Interpretable Regional Descriptors: Hyperbox-Based Local Explanations
Susanne Dandl
Giuseppe Casalicchio
Bernd Bischl
Ludwig Bothmann
23
8
0
04 May 2023
Explaining with Greater Support: Weighted Column Sampling Optimization
  for q-Consistent Summary-Explanations
Explaining with Greater Support: Weighted Column Sampling Optimization for q-Consistent Summary-Explanations
Chen Peng
Zhengqi Dai
Guangping Xia
Yajie Niu
Yihui Lei
23
0
0
09 Feb 2023
Personalized Interpretable Classification
Personalized Interpretable Classification
Zengyou He
Yifan Tang
Yifan Tang
Lianyu Hu
Yan Liu
Yan Liu
25
0
0
06 Feb 2023
Interpretable Selective Learning in Credit Risk
Interpretable Selective Learning in Credit Risk
Dangxing Chen
Weicheng Ye
Jiahui Ye
FaML
30
14
0
21 Sep 2022
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate
  Convolutional Neural Network Architecture From Truth Tables
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate Convolutional Neural Network Architecture From Truth Tables
Adrien Benamira
Tristan Guérand
Thomas Peyrin
Trevor Yap
Bryan Hooi
40
1
0
18 Aug 2022
Leveraging Explanations in Interactive Machine Learning: An Overview
Leveraging Explanations in Interactive Machine Learning: An Overview
Stefano Teso
Öznur Alkan
Wolfgang Stammer
Elizabeth M. Daly
XAI
FAtt
LRM
26
62
0
29 Jul 2022
Interpretable Off-Policy Learning via Hyperbox Search
Interpretable Off-Policy Learning via Hyperbox Search
D. Tschernutter
Tobias Hatt
Stefan Feuerriegel
OffRL
CML
50
5
0
04 Mar 2022
Analogies and Feature Attributions for Model Agnostic Explanation of
  Similarity Learners
Analogies and Feature Attributions for Model Agnostic Explanation of Similarity Learners
K. Ramamurthy
Amit Dhurandhar
Dennis L. Wei
Zaid Bin Tariq
FAtt
38
3
0
02 Feb 2022
POTATO: exPlainable infOrmation exTrAcTion framewOrk
POTATO: exPlainable infOrmation exTrAcTion framewOrk
Adam Kovacs
Kinga Gémes
Eszter Iklódi
Gábor Recski
35
4
0
31 Jan 2022
Efficient Decompositional Rule Extraction for Deep Neural Networks
Efficient Decompositional Rule Extraction for Deep Neural Networks
Mateo Espinosa Zarlenga
Z. Shams
M. Jamnik
14
16
0
24 Nov 2021
Rule Induction in Knowledge Graphs Using Linear Programming
Rule Induction in Knowledge Graphs Using Linear Programming
S. Dash
Joao Goncalves
26
5
0
15 Oct 2021
The Who in XAI: How AI Background Shapes Perceptions of AI Explanations
The Who in XAI: How AI Background Shapes Perceptions of AI Explanations
Upol Ehsan
Samir Passi
Q. V. Liao
Larry Chan
I-Hsiang Lee
Michael J. Muller
Mark O. Riedl
32
85
0
28 Jul 2021
MEGEX: Data-Free Model Extraction Attack against Gradient-Based
  Explainable AI
MEGEX: Data-Free Model Extraction Attack against Gradient-Based Explainable AI
T. Miura
Satoshi Hasegawa
Toshiki Shibahara
SILM
MIACV
21
37
0
19 Jul 2021
Zero-shot learning approach to adaptive Cybersecurity using Explainable
  AI
Zero-shot learning approach to adaptive Cybersecurity using Explainable AI
Dattaraj J. Rao
Shraddha Mane
AAML
24
11
0
21 Jun 2021
Controlling Neural Networks with Rule Representations
Controlling Neural Networks with Rule Representations
Sungyong Seo
Sercan Ö. Arik
Jinsung Yoon
Xiang Zhang
Kihyuk Sohn
Tomas Pfister
OOD
AI4CE
32
35
0
14 Jun 2021
A Holistic Approach to Interpretability in Financial Lending: Models,
  Visualizations, and Summary-Explanations
A Holistic Approach to Interpretability in Financial Lending: Models, Visualizations, and Summary-Explanations
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
19
41
0
04 Jun 2021
Rule Generation for Classification: Scalability, Interpretability, and Fairness
Rule Generation for Classification: Scalability, Interpretability, and Fairness
Tabea E. Rober
Adia C. Lumadjeng
M. Akyuz
cS. .Ilker Birbil
22
2
0
21 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Explaining Network Intrusion Detection System Using Explainable AI
  Framework
Explaining Network Intrusion Detection System Using Explainable AI Framework
Shraddha Mane
Dattaraj J. Rao
AAML
25
69
0
12 Mar 2021
Model extraction from counterfactual explanations
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
30
51
0
03 Sep 2020
IPBoost -- Non-Convex Boosting via Integer Programming
IPBoost -- Non-Convex Boosting via Integer Programming
M. Pfetsch
Sebastian Pokutta
14
6
0
11 Feb 2020
Questioning the AI: Informing Design Practices for Explainable AI User
  Experiences
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
52
702
0
08 Jan 2020
LIBRE: Learning Interpretable Boolean Rule Ensembles
LIBRE: Learning Interpretable Boolean Rule Ensembles
Graziano Mita
Paolo Papotti
Maurizio Filippone
Pietro Michiardi
8
16
0
15 Nov 2019
Generalized Linear Rule Models
Generalized Linear Rule Models
Dennis L. Wei
S. Dash
Tian Gao
Oktay Gunluk
15
63
0
05 Jun 2019
Column generation based math-heuristic for classification trees
Column generation based math-heuristic for classification trees
M. Firat
Guillaume Crognier
A. Gabor
C. Hurkens
Yingqian Zhang
17
7
0
15 Oct 2018
Learning Certifiably Optimal Rule Lists for Categorical Data
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
60
195
0
06 Apr 2017
1