Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.09767
Cited By
Local SGD Converges Fast and Communicates Little
24 May 2018
Sebastian U. Stich
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local SGD Converges Fast and Communicates Little"
50 / 629 papers shown
Title
Heterogeneous Federated Learning on a Graph
Huiyuan Wang
Xuyang Zhao
Weijie Lin
FedML
59
4
0
19 Sep 2022
Personalized Federated Learning with Communication Compression
El Houcine Bergou
Konstantin Burlachenko
Aritra Dutta
Peter Richtárik
FedML
80
9
0
12 Sep 2022
Federated Zero-Shot Learning for Visual Recognition
Zhi Chen
Yadan Luo
Sen Wang
Jingjing Li
Zi Huang
FedML
29
3
0
05 Sep 2022
HammingMesh: A Network Topology for Large-Scale Deep Learning
Torsten Hoefler
Tommaso Bonato
Daniele De Sensi
Salvatore Di Girolamo
Shigang Li
Marco Heddes
Jon Belk
Deepak Goel
Miguel Castro
Steve Scott
3DH
GNN
AI4CE
32
20
0
03 Sep 2022
Exact Penalty Method for Federated Learning
Shenglong Zhou
Geoffrey Ye Li
FedML
33
0
0
23 Aug 2022
Joint Privacy Enhancement and Quantization in Federated Learning
Natalie Lang
Elad Sofer
Tomer Shaked
Nir Shlezinger
FedML
39
46
0
23 Aug 2022
NET-FLEET: Achieving Linear Convergence Speedup for Fully Decentralized Federated Learning with Heterogeneous Data
Xin Zhang
Minghong Fang
Zhuqing Liu
Haibo Yang
Jia-Wei Liu
Zhengyuan Zhu
FedML
27
14
0
17 Aug 2022
On the Convergence of Multi-Server Federated Learning with Overlapping Area
Zhe Qu
Xingyu Li
Jie Xu
Bo Tang
Zhuo Lu
Yao-Hong Liu
FedML
50
15
0
16 Aug 2022
FedMR: Fedreated Learning via Model Recombination
Ming Hu
Zhihao Yue
Zhiwei Ling
Xian Wei
Mingsong Chen
FedML
21
0
0
16 Aug 2022
Adaptive Learning Rates for Faster Stochastic Gradient Methods
Samuel Horváth
Konstantin Mishchenko
Peter Richtárik
ODL
41
7
0
10 Aug 2022
Fast Heterogeneous Federated Learning with Hybrid Client Selection
Guangyuan Shen
D. Gao
Duanxiao Song
Libin Yang
Xukai Zhou
Shirui Pan
W. Lou
Fang Zhou
FedML
45
12
0
10 Aug 2022
Towards Communication-efficient Vertical Federated Learning Training via Cache-enabled Local Updates
Fangcheng Fu
Xupeng Miao
Jiawei Jiang
Huanran Xue
Bin Cui
FedML
32
21
0
29 Jul 2022
FedVARP: Tackling the Variance Due to Partial Client Participation in Federated Learning
Divyansh Jhunjhunwala
Pranay Sharma
Aushim Nagarkatti
Gauri Joshi
FedML
52
42
0
28 Jul 2022
CFLIT: Coexisting Federated Learning and Information Transfer
Zehong Lin
Hang Liu
Y. Zhang
17
11
0
26 Jul 2022
Fast Composite Optimization and Statistical Recovery in Federated Learning
Yajie Bao
M. Crawshaw
Sha Luo
Mingrui Liu
FedML
42
16
0
17 Jul 2022
Multi-Model Federated Learning with Provable Guarantees
Neelkamal Bhuyan
Sharayu Moharir
Gauri Joshi
FedML
32
14
0
09 Jul 2022
Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with Inexact Prox
Abdurakhmon Sadiev
D. Kovalev
Peter Richtárik
32
20
0
08 Jul 2022
Tackling Data Heterogeneity: A New Unified Framework for Decentralized SGD with Sample-induced Topology
Yan Huang
Ying Sun
Zehan Zhu
Changzhi Yan
Jinming Xu
FedML
35
15
0
08 Jul 2022
FAIR-BFL: Flexible and Incentive Redesign for Blockchain-based Federated Learning
Rongxin Xu
Shiva Raj Pokhrel
Qiujun Lan
Gang Li
25
7
0
26 Jun 2022
On the Importance and Applicability of Pre-Training for Federated Learning
Hong-You Chen
Cheng-Hao Tu
Zi-hua Li
Hang Shen
Wei-Lun Chao
FedML
26
78
0
23 Jun 2022
A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates
Yann Fraboni
Richard Vidal
Laetitia Kameni
Marco Lorenzi
FedML
27
24
0
21 Jun 2022
Communication-Efficient Federated Learning With Data and Client Heterogeneity
Hossein Zakerinia
Shayan Talaei
Giorgi Nadiradze
Dan Alistarh
FedML
31
7
0
20 Jun 2022
Pisces: Efficient Federated Learning via Guided Asynchronous Training
Zhifeng Jiang
Wei Wang
Baochun Li
Bo-wen Li
FedML
27
24
0
18 Jun 2022
FedNew: A Communication-Efficient and Privacy-Preserving Newton-Type Method for Federated Learning
Anis Elgabli
Chaouki Ben Issaid
Amrit Singh Bedi
K. Rajawat
M. Bennis
Vaneet Aggarwal
FedML
13
30
0
17 Jun 2022
Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
FedML
30
79
0
16 Jun 2022
Federated Data Analytics: A Study on Linear Models
Xubo Yue
Raed Al Kontar
Ana María Estrada Gómez
FedML
31
12
0
15 Jun 2022
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays
Konstantin Mishchenko
Francis R. Bach
Mathieu Even
Blake E. Woodworth
23
59
0
15 Jun 2022
Anchor Sampling for Federated Learning with Partial Client Participation
Feijie Wu
Song Guo
Zhihao Qu
Shiqi He
Ziming Liu
Jing Gao
FedML
36
12
0
13 Jun 2022
Neurotoxin: Durable Backdoors in Federated Learning
Zhengming Zhang
Ashwinee Panda
Linyue Song
Yaoqing Yang
Michael W. Mahoney
Joseph E. Gonzalez
Kannan Ramchandran
Prateek Mittal
FedML
40
130
0
12 Jun 2022
On Convergence of FedProx: Local Dissimilarity Invariant Bounds, Non-smoothness and Beyond
Xiao-Tong Yuan
P. Li
FedML
20
59
0
10 Jun 2022
On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data
Jianyu Wang
Rudrajit Das
Gauri Joshi
Satyen Kale
Zheng Xu
Tong Zhang
FedML
34
38
0
09 Jun 2022
Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication Compression
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
30
25
0
08 Jun 2022
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Rustem Islamov
Xun Qian
Slavomír Hanzely
M. Safaryan
Peter Richtárik
40
16
0
07 Jun 2022
Pretrained Models for Multilingual Federated Learning
Orion Weller
Marc Marone
Vladimir Braverman
Dawn J Lawrie
Benjamin Van Durme
VLM
FedML
AI4CE
46
42
0
06 Jun 2022
Straggler-Resilient Personalized Federated Learning
Isidoros Tziotis
Zebang Shen
Ramtin Pedarsani
Hamed Hassani
Aryan Mokhtari
FedML
39
9
0
05 Jun 2022
Communication-Efficient Distributionally Robust Decentralized Learning
Matteo Zecchin
Marios Kountouris
David Gesbert
25
9
0
31 May 2022
Optimal Gradient Sliding and its Application to Distributed Optimization Under Similarity
D. Kovalev
Aleksandr Beznosikov
Ekaterina Borodich
Alexander Gasnikov
G. Scutari
36
12
0
30 May 2022
A principled framework for the design and analysis of token algorithms
Hadrien Hendrikx
FedML
29
13
0
30 May 2022
Maximizing Global Model Appeal in Federated Learning
Yae Jee Cho
Divyansh Jhunjhunwala
Tian Li
Virginia Smith
Gauri Joshi
FedML
11
7
0
30 May 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
34
75
0
27 May 2022
Combating Client Dropout in Federated Learning via Friend Model Substitution
Heqiang Wang
Jie Xu
FedML
25
5
0
26 May 2022
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis
Maciej Besta
Torsten Hoefler
GNN
36
56
0
19 May 2022
Federated Learning Under Intermittent Client Availability and Time-Varying Communication Constraints
Mónica Ribero
H. Vikalo
G. Veciana
FedML
24
44
0
13 May 2022
A Communication-Efficient Distributed Gradient Clipping Algorithm for Training Deep Neural Networks
Mingrui Liu
Zhenxun Zhuang
Yunwei Lei
Chunyang Liao
38
17
0
10 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
29
10
0
08 May 2022
Communication-Efficient Adaptive Federated Learning
Yujia Wang
Lu Lin
Jinghui Chen
FedML
27
71
0
05 May 2022
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
Davoud Ataee Tarzanagh
Mingchen Li
Christos Thrampoulidis
Samet Oymak
FedML
44
73
0
04 May 2022
FedGiA: An Efficient Hybrid Algorithm for Federated Learning
Shenglong Zhou
Geoffrey Ye Li
FedML
36
16
0
03 May 2022
Personalized Federated Learning with Multiple Known Clusters
Boxiang Lyu
Filip Hanzely
Mladen Kolar
FedML
30
3
0
28 Apr 2022
On the Convergence of Momentum-Based Algorithms for Federated Bilevel Optimization Problems
Hongchang Gao
FedML
41
1
0
28 Apr 2022
Previous
1
2
3
...
5
6
7
...
11
12
13
Next