ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.08166
  4. Cited By
Learning to Optimize Tensor Programs

Learning to Optimize Tensor Programs

21 May 2018
Tianqi Chen
Lianmin Zheng
Eddie Q. Yan
Ziheng Jiang
T. Moreau
Luis Ceze
Carlos Guestrin
Arvind Krishnamurthy
ArXivPDFHTML

Papers citing "Learning to Optimize Tensor Programs"

45 / 145 papers shown
Title
A Runtime-Based Computational Performance Predictor for Deep Neural
  Network Training
A Runtime-Based Computational Performance Predictor for Deep Neural Network Training
Geoffrey X. Yu
Yubo Gao
P. Golikov
Gennady Pekhimenko
3DH
36
67
0
31 Jan 2021
UNIT: Unifying Tensorized Instruction Compilation
UNIT: Unifying Tensorized Instruction Compilation
Jian Weng
Animesh Jain
Jie Wang
Leyuan Wang
Yida Wang
Tony Nowatzki
199
30
0
21 Jan 2021
SplitSR: An End-to-End Approach to Super-Resolution on Mobile Devices
SplitSR: An End-to-End Approach to Super-Resolution on Mobile Devices
Xin Liu
Yuang Li
Josh Fromm
Yuntao wang
Ziheng Jiang
Alex Mariakakis
Shwetak N. Patel
SupR
42
10
0
20 Jan 2021
MLGO: a Machine Learning Guided Compiler Optimizations Framework
MLGO: a Machine Learning Guided Compiler Optimizations Framework
Mircea Trofin
Yundi Qian
E. Brevdo
Zinan Lin
K. Choromanski
Didong Li
44
62
0
13 Jan 2021
Self-Adaptive Reconfigurable Arrays (SARA): Using ML to Assist Scaling
  GEMM Acceleration
Self-Adaptive Reconfigurable Arrays (SARA): Using ML to Assist Scaling GEMM Acceleration
A. Samajdar
Michael Pellauer
T. Krishna
17
4
0
12 Jan 2021
Value Function Based Performance Optimization of Deep Learning Workloads
Value Function Based Performance Optimization of Deep Learning Workloads
Benoit Steiner
Chris Cummins
Horace He
Hugh Leather
6
2
0
30 Nov 2020
Cortex: A Compiler for Recursive Deep Learning Models
Cortex: A Compiler for Recursive Deep Learning Models
Pratik Fegade
Tianqi Chen
Phillip B. Gibbons
T. Mowry
VLM
8
28
0
02 Nov 2020
Transferable Graph Optimizers for ML Compilers
Transferable Graph Optimizers for ML Compilers
Yanqi Zhou
Sudip Roy
AmirAli Abdolrashidi
Daniel Wong
Peter C. Ma
...
Mangpo Phitchaya Phothilimtha
Shen Wang
Anna Goldie
Azalia Mirhoseini
James Laudon
GNN
10
53
0
21 Oct 2020
Learned Hardware/Software Co-Design of Neural Accelerators
Learned Hardware/Software Co-Design of Neural Accelerators
Zhan Shi
Chirag Sakhuja
Milad Hashemi
Kevin Swersky
Calvin Lin
19
15
0
05 Oct 2020
ConfuciuX: Autonomous Hardware Resource Assignment for DNN Accelerators
  using Reinforcement Learning
ConfuciuX: Autonomous Hardware Resource Assignment for DNN Accelerators using Reinforcement Learning
Sheng-Chun Kao
Geonhwa Jeong
T. Krishna
28
95
0
04 Sep 2020
FeatGraph: A Flexible and Efficient Backend for Graph Neural Network
  Systems
FeatGraph: A Flexible and Efficient Backend for Graph Neural Network Systems
Yuwei Hu
Zihao Ye
Minjie Wang
Jiali Yu
Da Zheng
Mu Li
Zheng-Wei Zhang
Zhiru Zhang
Yida Wang
GNN
45
80
0
26 Aug 2020
Woodpecker-DL: Accelerating Deep Neural Networks via Hardware-Aware
  Multifaceted Optimizations
Woodpecker-DL: Accelerating Deep Neural Networks via Hardware-Aware Multifaceted Optimizations
Yongchao Liu
Yue Jin
Yongqi Chen
Teng Teng
Hang Ou
Rui Zhao
Yao Zhang
16
1
0
11 Aug 2020
Spatial Sharing of GPU for Autotuning DNN models
Spatial Sharing of GPU for Autotuning DNN models
Aditya Dhakal
Junguk Cho
Sameer G. Kulkarni
K. Ramakrishnan
P. Sharma
21
8
0
08 Aug 2020
A Learned Performance Model for Tensor Processing Units
A Learned Performance Model for Tensor Processing Units
Samuel J. Kaufman
P. Phothilimthana
Yanqi Zhou
Charith Mendis
Sudip Roy
Amit Sabne
Mike Burrows
26
8
0
03 Aug 2020
MCUNet: Tiny Deep Learning on IoT Devices
MCUNet: Tiny Deep Learning on IoT Devices
Ji Lin
Wei-Ming Chen
Chengyue Wu
J. Cohn
Chuang Gan
Song Han
87
478
0
20 Jul 2020
Optimizing Memory Placement using Evolutionary Graph Reinforcement
  Learning
Optimizing Memory Placement using Evolutionary Graph Reinforcement Learning
Shauharda Khadka
Estelle Aflalo
Mattias Marder
Avrech Ben-David
Santiago Miret
Shie Mannor
Tamir Hazan
Hanlin Tang
Somdeb Majumdar
GNN
32
11
0
14 Jul 2020
SESAME: Software defined Enclaves to Secure Inference Accelerators with
  Multi-tenant Execution
SESAME: Software defined Enclaves to Secure Inference Accelerators with Multi-tenant Execution
Sarbartha Banerjee
Prakash Ramrakhyani
Shijia Wei
Mohit Tiwari
19
9
0
14 Jul 2020
Efficient Execution of Quantized Deep Learning Models: A Compiler
  Approach
Efficient Execution of Quantized Deep Learning Models: A Compiler Approach
Animesh Jain
Shoubhik Bhattacharya
Masahiro Masuda
Vin Sharma
Yida Wang
MQ
27
33
0
18 Jun 2020
Optimizing Grouped Convolutions on Edge Devices
Optimizing Grouped Convolutions on Edge Devices
Perry Gibson
José Cano
Jack Turner
Elliot J. Crowley
Michael F. P. O'Boyle
Amos Storkey
21
25
0
17 Jun 2020
Ansor: Generating High-Performance Tensor Programs for Deep Learning
Ansor: Generating High-Performance Tensor Programs for Deep Learning
Lianmin Zheng
Chengfan Jia
Minmin Sun
Zhao Wu
Cody Hao Yu
...
Jun Yang
Danyang Zhuo
Koushik Sen
Joseph E. Gonzalez
Ion Stoica
44
384
0
11 Jun 2020
OpEvo: An Evolutionary Method for Tensor Operator Optimization
OpEvo: An Evolutionary Method for Tensor Operator Optimization
Xiaotian Gao
C. Wei
Lintao Zhang
Mao Yang
19
3
0
10 Jun 2020
Nimble: Efficiently Compiling Dynamic Neural Networks for Model
  Inference
Nimble: Efficiently Compiling Dynamic Neural Networks for Model Inference
Haichen Shen
Jared Roesch
Zhi Chen
Wei Chen
Yong Wu
Mu Li
Vin Sharma
Zachary Tatlock
Yida Wang
28
57
0
04 Jun 2020
PolyDL: Polyhedral Optimizations for Creation of High Performance DL
  primitives
PolyDL: Polyhedral Optimizations for Creation of High Performance DL primitives
Sanket Tavarageri
A. Heinecke
Sasikanth Avancha
Gagandeep Goyal
Ramakrishna Upadrasta
Bharat Kaul
6
12
0
02 Jun 2020
ProTuner: Tuning Programs with Monte Carlo Tree Search
ProTuner: Tuning Programs with Monte Carlo Tree Search
Ameer Haj-Ali
Hasan Genç
Qijing Huang
William S. Moses
J. Wawrzynek
Krste Asanović
Ion Stoica
36
21
0
27 May 2020
Learning, transferring, and recommending performance knowledge with
  Monte Carlo tree search and neural networks
Learning, transferring, and recommending performance knowledge with Monte Carlo tree search and neural networks
Don M. Dini
16
0
0
06 May 2020
Enhancing network forensics with particle swarm and deep learning: The
  particle deep framework
Enhancing network forensics with particle swarm and deep learning: The particle deep framework
Nickolaos Koroniotis
Nour Moustafa
16
34
0
02 May 2020
Agile Autotuning of a Transprecision Tensor Accelerator Overlay for TVM
  Compiler Stack
Agile Autotuning of a Transprecision Tensor Accelerator Overlay for TVM Compiler Stack
D. Diamantopoulos
Burkhard Ringlein
M. Purandare
Gagandeep Singh
C. Hagleitner
14
7
0
20 Apr 2020
Learning to Accelerate Decomposition for Multi-Directional 3D Printing
Learning to Accelerate Decomposition for Multi-Directional 3D Printing
Chenming Wu
Yong Liu
Charlie C. L. Wang
14
6
0
17 Mar 2020
PolyScientist: Automatic Loop Transformations Combined with Microkernels
  for Optimization of Deep Learning Primitives
PolyScientist: Automatic Loop Transformations Combined with Microkernels for Optimization of Deep Learning Primitives
Sanket Tavarageri
A. Heinecke
Sasikanth Avancha
Gagandeep Goyal
Ramakrishna Upadrasta
Bharat Kaul
14
0
0
06 Feb 2020
Chameleon: Adaptive Code Optimization for Expedited Deep Neural Network
  Compilation
Chameleon: Adaptive Code Optimization for Expedited Deep Neural Network Compilation
Byung Hoon Ahn
Prannoy Pilligundla
Amir Yazdanbakhsh
H. Esmaeilzadeh
ODL
61
80
0
23 Jan 2020
Hybrid Composition with IdleBlock: More Efficient Networks for Image
  Recognition
Hybrid Composition with IdleBlock: More Efficient Networks for Image Recognition
Bing Xu
Andrew Tulloch
Yunpeng Chen
Xiaomeng Yang
Lin Qiao
21
4
0
19 Nov 2019
Compiler-Level Matrix Multiplication Optimization for Deep Learning
Compiler-Level Matrix Multiplication Optimization for Deep Learning
Huaqing Zhang
Xiaolin Cheng
H. Zang
Dae Hoon Park
6
8
0
23 Sep 2019
A Unified Optimization Approach for CNN Model Inference on Integrated
  GPUs
A Unified Optimization Approach for CNN Model Inference on Integrated GPUs
Leyuan Wang
Zhi Chen
Yizhi Liu
Yao Wang
Lianmin Zheng
Mu Li
Yida Wang
39
30
0
03 Jul 2019
Reinforcement Learning and Adaptive Sampling for Optimized DNN
  Compilation
Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation
Byung Hoon Ahn
Prannoy Pilligundla
H. Esmaeilzadeh
29
20
0
30 May 2019
Reinforced Genetic Algorithm Learning for Optimizing Computation Graphs
Reinforced Genetic Algorithm Learning for Optimizing Computation Graphs
Aditya Sanjay Paliwal
Felix Gimeno
Vinod Nair
Yujia Li
Miles Lubin
Pushmeet Kohli
Oriol Vinyals
OffRL
GNN
22
65
0
07 May 2019
Simulating Execution Time of Tensor Programs using Graph Neural Networks
Simulating Execution Time of Tensor Programs using Graph Neural Networks
Jakub M. Tomczak
Romain Lepert
Auke Wiggers
GNN
16
5
0
26 Apr 2019
A mechanism for balancing accuracy and scope in cross-machine black-box
  GPU performance modeling
A mechanism for balancing accuracy and scope in cross-machine black-box GPU performance modeling
James D Stevens
Andreas Klöckner
11
2
0
21 Apr 2019
Stripe: Tensor Compilation via the Nested Polyhedral Model
Stripe: Tensor Compilation via the Nested Polyhedral Model
Tim Zerrell
J. Bruestle
15
32
0
14 Mar 2019
Automating Generation of Low Precision Deep Learning Operators
Automating Generation of Low Precision Deep Learning Operators
M. Cowan
T. Moreau
Tianqi Chen
Luis Ceze
MQ
39
13
0
25 Oct 2018
Deep Reinforcement Learning
Deep Reinforcement Learning
Yuxi Li
VLM
OffRL
28
144
0
15 Oct 2018
ISA Mapper: A Compute and Hardware Agnostic Deep Learning Compiler
ISA Mapper: A Compute and Hardware Agnostic Deep Learning Compiler
Matthew Sotoudeh
Anand Venkat
Michael J. Anderson
E. Georganas
A. Heinecke
Jason Knight
14
9
0
12 Oct 2018
Learning to Perform Local Rewriting for Combinatorial Optimization
Learning to Perform Local Rewriting for Combinatorial Optimization
Xinyun Chen
Yuandong Tian
NAI
OffRL
48
338
0
30 Sep 2018
Optimizing CNN Model Inference on CPUs
Optimizing CNN Model Inference on CPUs
Yizhi Liu
Yao Wang
Ruofei Yu
Mu Li
Vin Sharma
Yida Wang
12
152
0
07 Sep 2018
A Hardware-Software Blueprint for Flexible Deep Learning Specialization
A Hardware-Software Blueprint for Flexible Deep Learning Specialization
T. Moreau
Tianqi Chen
Luis Vega
Jared Roesch
Eddie Q. Yan
...
Josh Fromm
Ziheng Jiang
Luis Ceze
Carlos Guestrin
Arvind Krishnamurthy
32
70
0
11 Jul 2018
A model-driven approach for a new generation of adaptive libraries
A model-driven approach for a new generation of adaptive libraries
Marco Cianfriglia
Damiano Perri
C. Nugteren
Anton Lokhmotov
G. Fursin
29
14
0
19 Jun 2018
Previous
123