Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.06530
Cited By
Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising
16 May 2018
Borja Balle
Yu-Xiang Wang
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising"
36 / 86 papers shown
Title
Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints
Justin Whitehouse
Zhiwei Steven Wu
Aaditya Ramdas
Ryan M. Rogers
11
9
0
15 Jun 2022
Analytical Composition of Differential Privacy via the Edgeworth Accountant
Hua Wang
Sheng-yang Gao
Huanyu Zhang
Milan Shen
Weijie J. Su
FedML
36
21
0
09 Jun 2022
Noise-Aware Statistical Inference with Differentially Private Synthetic Data
Ossi Raisa
Joonas Jälkö
Samuel Kaski
Antti Honkela
SyDa
43
10
0
28 May 2022
Auditing Differential Privacy in High Dimensions with the Kernel Quantum Rényi Divergence
Carles Domingo-Enrich
Youssef Mroueh
27
5
0
27 May 2022
Distributed non-disclosive validation of predictive models by a modified ROC-GLM
Daniel Schalk
V. Hoffmann
B. Bischl
U. Mansmann
14
3
0
21 Mar 2022
Bounding Membership Inference
Anvith Thudi
Ilia Shumailov
Franziska Boenisch
Nicolas Papernot
33
18
0
24 Feb 2022
Over-the-Air Ensemble Inference with Model Privacy
Selim F. Yilmaz
Burak Hasircioglu
Deniz Gunduz
FedML
35
23
0
07 Feb 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning
A. Mondal
Harpreet Virk
Debayan Gupta
40
15
0
06 Feb 2022
Exact Privacy Analysis of the Gaussian Sparse Histogram Mechanism
Brian Karrer
Daniel Kifer
Arjun S. Wilkins
Danfeng Zhang
20
4
0
02 Feb 2022
Privately Publishable Per-instance Privacy
Rachel Redberg
Yu-Xiang Wang
32
17
0
03 Nov 2021
The Skellam Mechanism for Differentially Private Federated Learning
Naman Agarwal
Peter Kairouz
Ziyu Liu
FedML
22
122
0
11 Oct 2021
Differentially Private n-gram Extraction
Kunho Kim
Sivakanth Gopi
Janardhan Kulkarni
Sergey Yekhanin
23
15
0
05 Aug 2021
When Differential Privacy Meets Interpretability: A Case Study
Rakshit Naidu
Aman Priyanshu
Aadith Kumar
Sasikanth Kotti
Haofan Wang
Fatemehsadat Mireshghallah
27
9
0
24 Jun 2021
A Vertical Federated Learning Framework for Graph Convolutional Network
Xiang Ni
Xiaolong Xu
Lingjuan Lyu
Changhua Meng
Weiqiang Wang
FedML
19
36
0
22 Jun 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu-Xiang Wang
18
98
0
16 Jun 2021
DP-SIGNSGD: When Efficiency Meets Privacy and Robustness
Lingjuan Lyu
FedML
AAML
27
19
0
11 May 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
44
232
0
12 Feb 2021
A bounded-noise mechanism for differential privacy
Y. Dagan
Gil Kur
25
22
0
07 Dec 2020
A Distributed Privacy-Preserving Learning Dynamics in General Social Networks
Youming Tao
Shuzhen Chen
Feng Li
Dongxiao Yu
Jiguo Yu
Hao Sheng
FedML
19
3
0
15 Nov 2020
Differentially Private Bayesian Inference for Generalized Linear Models
Tejas D. Kulkarni
Joonas Jälkö
A. Koskela
Samuel Kaski
Antti Honkela
35
31
0
01 Nov 2020
Permute-and-Flip: A new mechanism for differentially private selection
Ryan McKenna
Daniel Sheldon
112
47
0
23 Oct 2020
Differentially private partition selection
Damien Desfontaines
James R. Voss
Bryant Gipson
Chinmoy Mandayam
FedML
22
15
0
05 Jun 2020
Revisiting Membership Inference Under Realistic Assumptions
Bargav Jayaraman
Lingxiao Wang
Katherine Knipmeyer
Quanquan Gu
David Evans
24
147
0
21 May 2020
Differentially Private Set Union
Sivakanth Gopi
P. Gulhane
Janardhan Kulkarni
J. Shen
Milad Shokouhi
Sergey Yekhanin
FedML
27
32
0
22 Feb 2020
A Better Bound Gives a Hundred Rounds: Enhanced Privacy Guarantees via
f
f
f
-Divergences
S. Asoodeh
Jiachun Liao
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
FedML
22
38
0
16 Jan 2020
An Adaptive and Fast Convergent Approach to Differentially Private Deep Learning
Zhiying Xu
Shuyu Shi
A. Liu
Jun Zhao
Lin Chen
FedML
26
36
0
19 Dec 2019
Reviewing and Improving the Gaussian Mechanism for Differential Privacy
Jun Zhao
Teng Wang
Tao Bai
Kwok-Yan Lam
Zhiying Xu
Shuyu Shi
Xuebin Ren
Xinyu Yang
Yang Liu
Han Yu
44
30
0
27 Nov 2019
Diffprivlib: The IBM Differential Privacy Library
N. Holohan
S. Braghin
Pól Mac Aonghusa
Killian Levacher
SyDa
23
129
0
04 Jul 2019
DP-LSSGD: A Stochastic Optimization Method to Lift the Utility in Privacy-Preserving ERM
Bao Wang
Quanquan Gu
M. Boedihardjo
Farzin Barekat
Stanley J. Osher
16
25
0
28 Jun 2019
Locally Differentially Private Data Collection and Analysis
Teng Wang
Jun Zhao
Xinyu Yang
Xuebin Ren
27
13
0
05 Jun 2019
The Privacy Blanket of the Shuffle Model
Borja Balle
James Bell
Adria Gascon
Kobbi Nissim
FedML
42
236
0
07 Mar 2019
Privacy and Utility Tradeoff in Approximate Differential Privacy
Quan Geng
Wei Ding
Ruiqi Guo
Sanjiv Kumar
21
23
0
01 Oct 2018
Optimal Noise-Adding Mechanism in Additive Differential Privacy
Quan Geng
Wei Ding
Ruiqi Guo
Sanjiv Kumar
19
34
0
26 Sep 2018
Subsampled Rényi Differential Privacy and Analytical Moments Accountant
Yu-Xiang Wang
Borja Balle
S. Kasiviswanathan
14
397
0
31 Jul 2018
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
Borja Balle
Gilles Barthe
Marco Gaboardi
27
378
0
04 Jul 2018
An end-to-end Differentially Private Latent Dirichlet Allocation Using a Spectral Algorithm
Christopher DeCarolis
Mukul Ram
Seyed-Alireza Esmaeili
Yu-Xiang Wang
Furong Huang
FedML
11
12
0
25 May 2018
Previous
1
2