ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.06250
15
5

Learning Representations of Spatial Displacement through Sensorimotor Prediction

16 May 2018
Michael Garcia Ortiz
Alban Laflaquière
    SSL
    DRL
ArXivPDFHTML
Abstract

Robots act in their environment through sequences of continuous motor commands. Because of the dimensionality of the motor space, as well as the infinite possible combinations of successive motor commands, agents need compact representations that capture the structure of the resulting displacements. In the case of an autonomous agent with no a priori knowledge about its sensorimotor apparatus, this compression has to be learned. We propose to use Recurrent Neural Networks to encode motor sequences into a compact representation, which is used to predict the consequence of motor sequences in term of sensory changes. We show that sensory prediction can successfully guide the compression of motor sequences into representations that are organized topologically in term of spatial displacement.

View on arXiv
Comments on this paper