ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.05208
  4. Cited By
Theoretically Efficient Parallel Graph Algorithms Can Be Fast and
  Scalable

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable

14 May 2018
Laxman Dhulipala
G. Blelloch
Julian Shun
    GNN
ArXivPDFHTML

Papers citing "Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable"

18 / 18 papers shown
Title
GraphScale: A Framework to Enable Machine Learning over Billion-node
  Graphs
GraphScale: A Framework to Enable Machine Learning over Billion-node Graphs
Vipul Gupta
Xin Chen
Ruoyun Huang
Fanlong Meng
Jianjun Chen
Yujun Yan
GNN
36
0
0
22 Jul 2024
Engineering Massively Parallel MST Algorithms
Engineering Massively Parallel MST Algorithms
Peter Sanders
Matthias Schimek
13
4
0
23 Feb 2023
Engineering a Distributed-Memory Triangle Counting Algorithm
Engineering a Distributed-Memory Triangle Counting Algorithm
Peter Sanders
Tim Niklas Uhl
26
9
0
22 Feb 2023
Hierarchical Agglomerative Graph Clustering in Poly-Logarithmic Depth
Hierarchical Agglomerative Graph Clustering in Poly-Logarithmic Depth
Laxman Dhulipala
David Eisenstat
Jakub Lacki
Vahab Mirronki
Jessica Shi
16
12
0
23 Jun 2022
Theoretically and Practically Efficient Parallel Nucleus Decomposition
Theoretically and Practically Efficient Parallel Nucleus Decomposition
Jessica Shi
Laxman Dhulipala
Julian Shun
GNN
16
8
0
22 Nov 2021
Analysis of Work-Stealing and Parallel Cache Complexity
Analysis of Work-Stealing and Parallel Cache Complexity
Yan Gu
Zachary Napier
Yihan Sun
34
14
0
09 Nov 2021
Multi-Queues Can Be State-of-the-Art Priority Schedulers
Multi-Queues Can Be State-of-the-Art Priority Schedulers
A. Postnikova
N. Koval
Giorgi Nadiradze
Dan Alistarh
LRM
17
11
0
02 Sep 2021
Hierarchical Agglomerative Graph Clustering in Nearly-Linear Time
Hierarchical Agglomerative Graph Clustering in Nearly-Linear Time
Laxman Dhulipala
David Eisenstat
Jakub Lacki
Vahab Mirrokni
Jessica Shi
13
23
0
10 Jun 2021
GraphMineSuite: Enabling High-Performance and Programmable Graph Mining
  Algorithms with Set Algebra
GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra
Maciej Besta
Zur Vonarburg-Shmaria
Yannick Schaffner
Leonardo Schwarz
Grzegorz Kwa'sniewski
...
Philipp Lindenberger
Pavel Kalvoda
Marek Konieczny
O. Mutlu
Torsten Hoefler
27
27
0
05 Mar 2021
Parallel Index-Based Structural Graph Clustering and Its Approximation
Parallel Index-Based Structural Graph Clustering and Its Approximation
Tom Tseng
Laxman Dhulipala
Julian Shun
14
21
0
21 Dec 2020
Sandslash: A Two-Level Framework for Efficient Graph Pattern Mining
Sandslash: A Two-Level Framework for Efficient Graph Pattern Mining
Xuhao Chen
Roshan Dathathri
G. Gill
Loc Hoang
K. Pingali
16
35
0
05 Nov 2020
High-Performance Parallel Graph Coloring with Strong Guarantees on Work,
  Depth, and Quality
High-Performance Parallel Graph Coloring with Strong Guarantees on Work, Depth, and Quality
Maciej Besta
Armon Carigiet
Zur Vonarburg-Shmaria
Kacper Janda
Lukas Gianinazzi
Torsten Hoefler
20
26
0
26 Aug 2020
Parallel Batch-Dynamic $k$-Clique Counting
Parallel Batch-Dynamic kkk-Clique Counting
Laxman Dhulipala
Quanquan C. Liu
Julian Shun
Shangdi Yu
30
25
0
30 Mar 2020
Efficiency Guarantees for Parallel Incremental Algorithms under Relaxed
  Schedulers
Efficiency Guarantees for Parallel Incremental Algorithms under Relaxed Schedulers
Dan Alistarh
N. Koval
Giorgi Nadiradze
8
6
0
20 Mar 2020
Parallel Clique Counting and Peeling Algorithms
Parallel Clique Counting and Peeling Algorithms
Jessica Shi
Laxman Dhulipala
Julian Shun
22
42
0
24 Feb 2020
Sage: Parallel Semi-Asymmetric Graph Algorithms for NVRAMs
Sage: Parallel Semi-Asymmetric Graph Algorithms for NVRAMs
Laxman Dhulipala
Charles McGuffey
H. Kang
Yan Gu
G. Blelloch
Phillip B. Gibbons
Julian Shun
GNN
18
12
0
27 Oct 2019
Pruned Landmark Labeling Meets Vertex Centric Computation: A
  Surprisingly Happy Marriage!
Pruned Landmark Labeling Meets Vertex Centric Computation: A Surprisingly Happy Marriage!
R. Jin
Zhen Peng
W. Wu
F. Dragan
G. Agrawal
Bin Ren
21
3
0
28 Jun 2019
Single Machine Graph Analytics on Massive Datasets Using Intel Optane DC
  Persistent Memory
Single Machine Graph Analytics on Massive Datasets Using Intel Optane DC Persistent Memory
G. Gill
Roshan Dathathri
Loc Hoang
R. Peri
K. Pingali
GNN
27
79
0
15 Apr 2019
1