Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.05010
Cited By
v1
v2 (latest)
Detecting Adversarial Samples for Deep Neural Networks through Mutation Testing
14 May 2018
Jingyi Wang
Jun Sun
Peixin Zhang
Xinyu Wang
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Detecting Adversarial Samples for Deep Neural Networks through Mutation Testing"
34 / 34 papers shown
Title
Attacking Convolutional Neural Network using Differential Evolution
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
44
45
0
19 Apr 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
243
3,194
0
01 Feb 2018
Spatially Transformed Adversarial Examples
Chaowei Xiao
Jun-Yan Zhu
Yue Liu
Warren He
M. Liu
Basel Alomair
AAML
76
524
0
08 Jan 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
69
1,350
0
12 Dec 2017
Attacking Binarized Neural Networks
A. Galloway
Graham W. Taylor
M. Moussa
MQ
AAML
63
105
0
01 Nov 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
125
1,406
0
31 Oct 2017
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
125
864
0
29 Oct 2017
Feature-Guided Black-Box Safety Testing of Deep Neural Networks
Matthew Wicker
Xiaowei Huang
Marta Kwiatkowska
AAML
46
235
0
21 Oct 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
66
641
0
13 Sep 2017
Towards Proving the Adversarial Robustness of Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel J. Kochenderfer
AAML
OOD
80
118
0
08 Sep 2017
DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars
Yuchi Tian
Kexin Pei
Suman Jana
Baishakhi Ray
AAML
67
1,360
0
28 Aug 2017
Fast Feature Fool: A data independent approach to universal adversarial perturbations
Konda Reddy Mopuri
Utsav Garg
R. Venkatesh Babu
AAML
89
206
0
18 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
315
12,131
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,728
0
19 May 2017
DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei
Yinzhi Cao
Junfeng Yang
Suman Jana
AAML
102
1,371
0
18 May 2017
Extending Defensive Distillation
Nicolas Papernot
Patrick McDaniel
AAML
67
119
0
15 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
145
808
0
28 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
87
1,271
0
04 Apr 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
76
714
0
21 Feb 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
61
950
0
14 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
318
1,874
0
03 Feb 2017
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
Basel Alomair
AAML
140
1,741
0
08 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
472
3,148
0
04 Nov 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
236
944
0
21 Oct 2016
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Nicolas Papernot
Fartash Faghri
Nicholas Carlini
Ian Goodfellow
Reuben Feinman
...
David Berthelot
P. Hendricks
Jonas Rauber
Rujun Long
Patrick McDaniel
AAML
65
514
0
03 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
268
8,579
0
16 Aug 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
116
1,741
0
24 May 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
75
3,682
0
08 Feb 2016
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
115
3,967
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
154
4,905
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
113
3,077
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,107
0
20 Dec 2014
Towards Deep Neural Network Architectures Robust to Adversarial Examples
S. Gu
Luca Rigazio
AAML
76
844
0
11 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
282
14,961
1
21 Dec 2013
1