ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.04928
  4. Cited By
Doing the impossible: Why neural networks can be trained at all

Doing the impossible: Why neural networks can be trained at all

13 May 2018
Nathan Oken Hodas
P. Stinis
    AI4CE
ArXivPDFHTML

Papers citing "Doing the impossible: Why neural networks can be trained at all"

3 / 3 papers shown
Title
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
PINN
AI4CE
22
442
0
23 Sep 2019
Enforcing constraints for interpolation and extrapolation in Generative
  Adversarial Networks
Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks
P. Stinis
Tobias J. Hagge
A. Tartakovsky
Enoch Yeung
GAN
AI4CE
53
33
0
22 Mar 2018
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1