Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.04928
Cited By
Doing the impossible: Why neural networks can be trained at all
13 May 2018
Nathan Oken Hodas
P. Stinis
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Doing the impossible: Why neural networks can be trained at all"
3 / 3 papers shown
Title
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
PINN
AI4CE
22
442
0
23 Sep 2019
Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks
P. Stinis
Tobias J. Hagge
A. Tartakovsky
Enoch Yeung
GAN
AI4CE
53
33
0
22 Mar 2018
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1