ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.04333
  4. Cited By
Quantitative Projection Coverage for Testing ML-enabled Autonomous
  Systems

Quantitative Projection Coverage for Testing ML-enabled Autonomous Systems

11 May 2018
Chih-Hong Cheng
Chung-Hao Huang
Hirotoshi Yasuoka
ArXiv (abs)PDFHTML

Papers citing "Quantitative Projection Coverage for Testing ML-enabled Autonomous Systems"

10 / 10 papers shown
Title
Towards Fast Computation of Certified Robustness for ReLU Networks
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
108
695
0
25 Apr 2018
Testing Deep Neural Networks
Testing Deep Neural Networks
Youcheng Sun
Xiaowei Huang
Daniel Kroening
James Sharp
Matthew Hill
Rob Ashmore
AAML
54
218
0
10 Mar 2018
High-Resolution Image Synthesis and Semantic Manipulation with
  Conditional GANs
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Ting-Chun Wang
Ming-Yuan Liu
Jun-Yan Zhu
Andrew Tao
Jan Kautz
Bryan Catanzaro
SSeg
174
3,940
0
30 Nov 2017
Neural Networks for Safety-Critical Applications - Challenges,
  Experiments and Perspectives
Neural Networks for Safety-Critical Applications - Challenges, Experiments and Perspectives
Chih-Hong Cheng
Frederik Diehl
Yassine Hamza
Gereon Hinz
Georg Nührenberg
Markus Rickert
Harald Ruess
Michael Truong-Le
AAML
43
34
0
04 Sep 2017
Maximum Resilience of Artificial Neural Networks
Maximum Resilience of Artificial Neural Networks
Chih-Hong Cheng
Georg Nührenberg
Harald Ruess
AAML
111
284
0
28 Apr 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
318
1,873
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
228
943
0
21 Oct 2016
End to End Learning for Self-Driving Cars
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
100
4,170
0
25 Apr 2016
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,897
0
14 Nov 2015
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,308
0
20 Dec 2013
1