Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.04049
Cited By
Exploiting Unintended Feature Leakage in Collaborative Learning
10 May 2018
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting Unintended Feature Leakage in Collaborative Learning"
50 / 633 papers shown
Title
Federated Learning of User Authentication Models
H. Hosseini
Sungrack Yun
Hyunsin Park
Christos Louizos
Joseph B. Soriaga
Max Welling
FedML
18
12
0
09 Jul 2020
BlockFLow: An Accountable and Privacy-Preserving Solution for Federated Learning
Vaikkunth Mugunthan
Ravi Rahman
Lalana Kagal
FedML
13
40
0
08 Jul 2020
Privacy Threats Against Federated Matrix Factorization
Dashan Gao
Ben Tan
Ce Ju
V. Zheng
Qiang Yang
13
12
0
03 Jul 2020
Rotation-Equivariant Neural Networks for Privacy Protection
Hao Zhang
Yiting Chen
Haotian Ma
Xu Cheng
Qihan Ren
Liyao Xiang
Jie Shi
Quanshi Zhang
18
3
0
21 Jun 2020
Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks
Lixin Fan
Kam Woh Ng
Ce Ju
Tianyu Zhang
Chang Liu
Chee Seng Chan
Qiang Yang
MIACV
17
63
0
20 Jun 2020
Topology-aware Differential Privacy for Decentralized Image Classification
Shangwei Guo
Tianwei Zhang
Guowen Xu
Hanzhou Yu
Tao Xiang
Yang Liu
22
18
0
14 Jun 2020
Understanding Unintended Memorization in Federated Learning
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Franccoise Beaufays
FedML
14
45
0
12 Jun 2020
An Accurate, Scalable and Verifiable Protocol for Federated Differentially Private Averaging
C. Sabater
A. Bellet
J. Ramon
FedML
21
18
0
12 Jun 2020
Characterizing Impacts of Heterogeneity in Federated Learning upon Large-Scale Smartphone Data
Chengxu Yang
Qipeng Wang
Mengwei Xu
Shangguang Wang
Kaigui Bian
Yunxin Liu
Xuanzhe Liu
24
22
0
12 Jun 2020
Scalable Privacy-Preserving Distributed Learning
D. Froelicher
J. Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean-Pierre Hubaux
FedML
22
68
0
19 May 2020
Fair Inputs and Fair Outputs: The Incompatibility of Fairness in Privacy and Accuracy
Bashir Rastegarpanah
M. Crovella
Krishna P. Gummadi
FaML
21
8
0
19 May 2020
An Overview of Privacy in Machine Learning
Emiliano De Cristofaro
SILM
25
83
0
18 May 2020
Efficient Federated Learning over Multiple Access Channel with Differential Privacy Constraints
Amir Sonee
Stefano Rini
19
16
0
15 May 2020
Defending Model Inversion and Membership Inference Attacks via Prediction Purification
Ziqi Yang
Bin Shao
Bohan Xuan
E. Chang
Fan Zhang
AAML
17
71
0
08 May 2020
When Machine Unlearning Jeopardizes Privacy
Min Chen
Zhikun Zhang
Tianhao Wang
Michael Backes
Mathias Humbert
Yang Zhang
MIACV
31
218
0
05 May 2020
Differentially Private Federated Learning with Laplacian Smoothing
Zhicong Liang
Bao Wang
Quanquan Gu
Stanley Osher
Yuan Yao
FedML
12
7
0
01 May 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
73
25
0
27 Apr 2020
Enhancing Privacy via Hierarchical Federated Learning
A. Wainakh
Alejandro Sánchez Guinea
Tim Grube
M. Mühlhäuser
FedML
28
45
0
23 Apr 2020
A Framework for Evaluating Gradient Leakage Attacks in Federated Learning
Wenqi Wei
Ling Liu
Margaret Loper
Ka-Ho Chow
Mehmet Emre Gursoy
Stacey Truex
Yanzhao Wu
FedML
18
146
0
22 Apr 2020
DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments
Fan Mo
Ali Shahin Shamsabadi
Kleomenis Katevas
Soteris Demetriou
Ilias Leontiadis
Andrea Cavallaro
Hamed Haddadi
FedML
18
175
0
12 Apr 2020
PrivEdge: From Local to Distributed Private Training and Prediction
Ali Shahin Shamsabadi
Adria Gascon
Hamed Haddadi
Andrea Cavallaro
26
19
0
12 Apr 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
60
50
0
01 Apr 2020
Information Leakage in Embedding Models
Congzheng Song
A. Raghunathan
MIACV
21
262
0
31 Mar 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
26
1,193
0
31 Mar 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
196
359
0
24 Mar 2020
Survey of Personalization Techniques for Federated Learning
V. Kulkarni
Milind Kulkarni
Aniruddha Pant
FedML
182
327
0
19 Mar 2020
Can We Use Split Learning on 1D CNN Models for Privacy Preserving Training?
Sharif Abuadbba
Kyuyeon Kim
Minki Kim
Chandra Thapa
S. Çamtepe
Yansong Gao
Hyoungshick Kim
Surya Nepal
FedML
8
122
0
16 Mar 2020
Dynamic Backdoor Attacks Against Machine Learning Models
A. Salem
Rui Wen
Michael Backes
Shiqing Ma
Yang Zhang
AAML
39
270
0
07 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
202
434
0
04 Mar 2020
User-Level Privacy-Preserving Federated Learning: Analysis and Performance Optimization
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Hang Su
Bo-Wen Zhang
H. Vincent Poor
FedML
25
11
0
29 Feb 2020
PrivacyFL: A simulator for privacy-preserving and secure federated learning
Vaikkunth Mugunthan
Anton Peraire-Bueno
Lalana Kagal
FedML
14
57
0
19 Feb 2020
Wireless Federated Learning with Local Differential Privacy
Mohamed Seif
Ravi Tandon
Ming Li
84
171
0
12 Feb 2020
Salvaging Federated Learning by Local Adaptation
Tao Yu
Eugene Bagdasaryan
Vitaly Shmatikov
FedML
25
260
0
12 Feb 2020
On the Convergence of Artificial Intelligence and Distributed Ledger Technology: A Scoping Review and Future Research Agenda
Konstantin D. Pandl
Scott Thiebes
Manuel Schmidt-Kraepelin
Ali Sunyaev
32
69
0
29 Jan 2020
Privacy for All: Demystify Vulnerability Disparity of Differential Privacy against Membership Inference Attack
Bo Zhang
Ruotong Yu
Haipei Sun
Yanying Li
Jun Xu
Wendy Hui Wang
AAML
14
13
0
24 Jan 2020
iDLG: Improved Deep Leakage from Gradients
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
23
623
0
08 Jan 2020
Attack-Resistant Federated Learning with Residual-based Reweighting
Shuhao Fu
Chulin Xie
Bo-wen Li
Qifeng Chen
FedML
AAML
30
93
0
24 Dec 2019
Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge Transfer
Hong Chang
Virat Shejwalkar
Reza Shokri
Amir Houmansadr
FedML
18
167
0
24 Dec 2019
Learning to Prevent Leakage: Privacy-Preserving Inference in the Mobile Cloud
Shuang Zhang
Liyao Xiang
Congcong Li
Yixuan Wang
Quanshi Zhang
Zeyu Liu
Bo-wen Li
FedML
8
1
0
18 Dec 2019
Asynchronous Federated Learning with Differential Privacy for Edge Intelligence
Yanan Li
Shusen Yang
Xuebin Ren
Cong Zhao
FedML
19
33
0
17 Dec 2019
Efficient Per-Example Gradient Computations in Convolutional Neural Networks
G. Rochette
Andre Manoel
Eric W. Tramel
14
19
0
12 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
74
6,091
0
10 Dec 2019
Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
Minghong Fang
Xiaoyu Cao
Jinyuan Jia
Neil Zhenqiang Gong
AAML
OOD
FedML
46
1,075
0
26 Nov 2019
Effects of Differential Privacy and Data Skewness on Membership Inference Vulnerability
Stacey Truex
Ling Liu
Mehmet Emre Gursoy
Wenqi Wei
Lei Yu
MIACV
24
46
0
21 Nov 2019
Theoretical Guarantees for Model Auditing with Finite Adversaries
Mario Díaz
Peter Kairouz
Jiachun Liao
Lalitha Sankar
MLAU
AAML
34
2
0
08 Nov 2019
Secure Federated Submodel Learning
Chaoyue Niu
Fan Wu
Shaojie Tang
Lifeng Hua
Rongfei Jia
Chengfei Lv
Zhihua Wu
Guihai Chen
FedML
14
30
0
06 Nov 2019
RIGA: Covert and Robust White-Box Watermarking of Deep Neural Networks
Tianhao Wang
Florian Kerschbaum
AAML
19
36
0
31 Oct 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
30
53
0
21 Oct 2019
Eavesdrop the Composition Proportion of Training Labels in Federated Learning
Lixu Wang
Shichao Xu
Tianlin Li
Qi Zhu
FedML
20
62
0
14 Oct 2019
A blockchain-orchestrated Federated Learning architecture for healthcare consortia
Jonathan Passerat-Palmbach
Tyler Farnan
Robert C Miller
M. Gross
H. Flannery
Bill Gleim
FedML
14
54
0
12 Oct 2019
Previous
1
2
3
...
11
12
13
Next