ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.03699
  4. Cited By
Fast and Accurate Tumor Segmentation of Histology Images using
  Persistent Homology and Deep Convolutional Features

Fast and Accurate Tumor Segmentation of Histology Images using Persistent Homology and Deep Convolutional Features

9 May 2018
Talha Qaiser
Yee Wah Tsang
D. Taniyama
Naoya Sakamoto
Kazuaki Nakane
David B. A. Epstein
Nasir M. Rajpoot
ArXivPDFHTML

Papers citing "Fast and Accurate Tumor Segmentation of Histology Images using Persistent Homology and Deep Convolutional Features"

14 / 14 papers shown
Title
WSI-SAM: Multi-resolution Segment Anything Model (SAM) for
  histopathology whole-slide images
WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images
Hong Liu
Haosen Yang
P. Diest
J. Pluim
M. Veta
VLM
40
6
0
14 Mar 2024
Topology-Aware Loss for Aorta and Great Vessel Segmentation in Computed
  Tomography Images
Topology-Aware Loss for Aorta and Great Vessel Segmentation in Computed Tomography Images
Seher Ozcelik
S. Unver
I. A. Gurses
R. Turkay
Cigdem Demir
21
1
0
06 Jul 2023
A fast topological approach for predicting anomalies in time-varying
  graphs
A fast topological approach for predicting anomalies in time-varying graphs
Umar Islambekov
Hasani Pathirana
O. Khormali
Cüneyt Gürcan Akçora
Ekaterina Smirnova
23
1
0
11 May 2023
Topology-Aware Focal Loss for 3D Image Segmentation
Topology-Aware Focal Loss for 3D Image Segmentation
Andac Demir
Elie Massaad
B. Kiziltan
33
8
0
24 Apr 2023
Masked Pre-Training of Transformers for Histology Image Analysis
Masked Pre-Training of Transformers for Histology Image Analysis
Shuai Jiang
Liesbeth Hondelink
A. Suriawinata
Saeed Hassanpour
MedIm
31
15
0
14 Apr 2023
Consistency Regularisation in Varying Contexts and Feature Perturbations
  for Semi-Supervised Semantic Segmentation of Histology Images
Consistency Regularisation in Varying Contexts and Feature Perturbations for Semi-Supervised Semantic Segmentation of Histology Images
R. M. S. Bashir
Talha Qaiser
S. Raza
Nasir M. Rajpoot
38
13
0
30 Jan 2023
Glo-In-One: Holistic Glomerular Detection, Segmentation, and Lesion
  Characterization with Large-scale Web Image Mining
Glo-In-One: Holistic Glomerular Detection, Segmentation, and Lesion Characterization with Large-scale Web Image Mining
Tianyuan Yao
Yuzhe Lu
Jun Long
Aadarsh Jha
Zheyu Zhu
Zuhayr Asad
Haichun Yang
Agnes B. Fogo
Yuankai Huo
31
10
0
31 May 2022
A review of machine learning approaches, challenges and prospects for
  computational tumor pathology
A review of machine learning approaches, challenges and prospects for computational tumor pathology
Liangrui Pan
Zhichao Feng
Shaoliang Peng
AI4CE
27
7
0
31 May 2022
AI-based Carcinoma Detection and Classification Using Histopathological
  Images: A Systematic Review
AI-based Carcinoma Detection and Classification Using Histopathological Images: A Systematic Review
Swathi C. Prabhu
K. Prasad
Antonio Robels-Kelly
Xuequan Lu
16
38
0
18 Jan 2022
Hybrid guiding: A multi-resolution refinement approach for semantic
  segmentation of gigapixel histopathological images
Hybrid guiding: A multi-resolution refinement approach for semantic segmentation of gigapixel histopathological images
André Pedersen
Erik Smistad
T. V. Rise
V. G. Dale
H. S. Pettersen
T. Nordmo
D. Bouget
Ingerid Reinertsen
Marit Valla
27
3
0
07 Dec 2021
Multi-Layer Pseudo-Supervision for Histopathology Tissue Semantic
  Segmentation using Patch-level Classification Labels
Multi-Layer Pseudo-Supervision for Histopathology Tissue Semantic Segmentation using Patch-level Classification Labels
Chu Han
Jiatai Lin
Jinhai Mai
Yi Wang
Qingling Zhang
...
Zeyan Xu
Xiaomei Huang
Guoqiang Han
Chang-xiu Liang
Zaiyi Liu
34
89
0
14 Oct 2021
Self-Rule to Multi-Adapt: Generalized Multi-source Feature Learning
  Using Unsupervised Domain Adaptation for Colorectal Cancer Tissue Detection
Self-Rule to Multi-Adapt: Generalized Multi-source Feature Learning Using Unsupervised Domain Adaptation for Colorectal Cancer Tissue Detection
C. Abbet
Linda Studer
Andreas Fischer
H. Dawson
I. Zlobec
Behzad Bozorgtabar
Jean-Philippe Thiran
OOD
45
32
0
20 Aug 2021
SRPN: similarity-based region proposal networks for nuclei and cells
  detection in histology images
SRPN: similarity-based region proposal networks for nuclei and cells detection in histology images
Yibao Sun
Xingru Huang
Huiyu Zhou
Qianni Zhang
33
31
0
25 Jun 2021
PathologyGAN: Learning deep representations of cancer tissue
PathologyGAN: Learning deep representations of cancer tissue
A. Quiros
R. Murray-Smith
Ke-Fei Yuan
MedIm
GAN
14
85
0
04 Jul 2019
1