ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.01916
  4. Cited By
Analysis of nonsmooth stochastic approximation: the differential
  inclusion approach

Analysis of nonsmooth stochastic approximation: the differential inclusion approach

4 May 2018
Szymon Majewski
B. Miasojedow
Eric Moulines
ArXivPDFHTML

Papers citing "Analysis of nonsmooth stochastic approximation: the differential inclusion approach"

10 / 10 papers shown
Title
The late-stage training dynamics of (stochastic) subgradient descent on homogeneous neural networks
Sholom Schechtman
Nicolas Schreuder
173
0
0
08 Feb 2025
Riemannian Stochastic Approximation for Minimizing Tame Nonsmooth Objective Functions
Riemannian Stochastic Approximation for Minimizing Tame Nonsmooth Objective Functions
Johannes Aspman
Vyacheslav Kungurtsev
R. Seraji
26
1
0
31 Dec 2024
Inexact subgradient methods for semialgebraic functions
Inexact subgradient methods for semialgebraic functions
Jérôme Bolte
Tam Le
Éric Moulines
Edouard Pauwels
57
2
0
30 Apr 2024
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
  Nonconvex Optimization
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
59
52
0
12 Sep 2022
Stochastic Subgradient Descent on a Generic Definable Function Converges to a Minimizer
S. Schechtman
22
1
0
06 Sep 2021
Unbalanced minibatch Optimal Transport; applications to Domain
  Adaptation
Unbalanced minibatch Optimal Transport; applications to Domain Adaptation
Kilian Fatras
Thibault Séjourné
Nicolas Courty
Rémi Flamary
OT
40
146
0
05 Mar 2021
Minibatch optimal transport distances; analysis and applications
Minibatch optimal transport distances; analysis and applications
Kilian Fatras
Younes Zine
Szymon Majewski
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
71
54
0
05 Jan 2021
On Correctness of Automatic Differentiation for Non-Differentiable
  Functions
On Correctness of Automatic Differentiation for Non-Differentiable Functions
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
20
40
0
12 Jun 2020
A Stochastic Subgradient Method for Distributionally Robust Non-Convex
  Learning
A Stochastic Subgradient Method for Distributionally Robust Non-Convex Learning
Mert Gurbuzbalaban
A. Ruszczynski
Landi Zhu
26
9
0
08 Jun 2020
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
90
736
0
19 Mar 2014
1