Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.01648
Cited By
Sharp convergence rates for Langevin dynamics in the nonconvex setting
4 May 2018
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sharp convergence rates for Langevin dynamics in the nonconvex setting"
37 / 37 papers shown
Title
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Jiaqi Leng
Zhiyan Ding
Zherui Chen
Lin Lin
62
0
0
08 May 2025
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Andreas Habring
Alexander Falk
T. Pock
60
0
0
03 Feb 2025
Nonlinear Hamiltonian Monte Carlo & its Particle Approximation
Nawaf Bou-Rabee
Katharina Schuh
23
7
0
22 Aug 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
31
6
0
08 Mar 2023
Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation
David Holzmüller
Francis R. Bach
36
8
0
06 Mar 2023
Non-convex sampling for a mixture of locally smooth potentials
D. Nguyen
33
0
0
31 Jan 2023
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity -- the Strongly Convex Case
Tim Johnston
Iosif Lytras
Sotirios Sabanis
35
8
0
19 Jan 2023
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Nawaf Bou-Rabee
Milo Marsden
32
12
0
20 Nov 2022
A Dynamical System View of Langevin-Based Non-Convex Sampling
Mohammad Reza Karimi
Ya-Ping Hsieh
Andreas Krause
40
4
0
25 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
35
24
0
16 Oct 2022
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
49
15
0
05 Oct 2022
Gradient Norm Minimization of Nesterov Acceleration:
o
(
1
/
k
3
)
o(1/k^3)
o
(
1/
k
3
)
Shu Chen
Bin Shi
Ya-xiang Yuan
28
15
0
19 Sep 2022
Utilising the CLT Structure in Stochastic Gradient based Sampling : Improved Analysis and Faster Algorithms
Aniket Das
Dheeraj M. Nagaraj
Anant Raj
54
6
0
08 Jun 2022
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
26
19
0
01 Jun 2022
Uniform Generalization Bound on Time and Inverse Temperature for Gradient Descent Algorithm and its Application to Analysis of Simulated Annealing
Keisuke Suzuki
AI4CE
30
0
0
25 May 2022
Weak Convergence of Approximate reflection coupling and its Application to Non-convex Optimization
Keisuke Suzuki
22
5
0
24 May 2022
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
40
60
0
10 Feb 2022
Heavy-tailed denoising score matching
J. Deasy
Nikola Simidjievski
Pietro Lio'
DiffM
31
14
0
17 Dec 2021
A generalization gap estimation for overparameterized models via the Langevin functional variance
Akifumi Okuno
Keisuke Yano
38
1
0
07 Dec 2021
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi Ma
Tong Zhang
37
16
0
05 Oct 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
35
27
0
21 Jun 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
22
17
0
06 May 2021
Random Coordinate Underdamped Langevin Monte Carlo
Zhiyan Ding
Qin Li
Jianfeng Lu
Stephen J. Wright
BDL
21
13
0
22 Oct 2020
Unnormalized Variational Bayes
Saeed Saremi
BDL
81
1
0
29 Jul 2020
Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence
Murat A. Erdogdu
Rasa Hosseinzadeh
Matthew Shunshi Zhang
86
41
0
22 Jul 2020
Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms
A. Lovas
Iosif Lytras
Miklós Rásonyi
Sotirios Sabanis
15
25
0
25 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
35
50
0
14 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
6
74
0
27 May 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
43
17
0
13 Feb 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
19
65
0
11 Feb 2020
Inference in Multi-Layer Networks with Matrix-Valued Unknowns
Parthe Pandit
Mojtaba Sahraee-Ardakan
S. Rangan
P. Schniter
A. Fletcher
23
6
0
26 Jan 2020
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
25
10
0
25 Mar 2019
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
12
46
0
05 Sep 2018
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
24
155
0
24 Jul 2018
Coupling and Convergence for Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
Raphael Zimmer
77
136
0
01 May 2018
Dimensionally Tight Bounds for Second-Order Hamiltonian Monte Carlo
Oren Mangoubi
Nisheeth K. Vishnoi
27
53
0
24 Feb 2018
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
105
1,152
0
04 Mar 2015
1