Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.01026
Cited By
Computing CNN Loss and Gradients for Pose Estimation with Riemannian Geometry
2 May 2018
Benjamin Hou
Nina Miolane
Bishesh Khanal
M. J. Lee
A. Alansary
Steven G. McDonagh
Joseph V. Hajnal
Daniel Rueckert
Ben Glocker
Bernhard Kainz
MedIm
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Computing CNN Loss and Gradients for Pose Estimation with Riemannian Geometry"
6 / 6 papers shown
Title
Long-term Dependency for 3D Reconstruction of Freehand Ultrasound Without External Tracker
Qi Li
Ziyi Shen
Qian Li
D. Barratt
T. Dowrick
Matthew J. Clarkson
Tom Kamiel Magda Vercauteren
Yipeng Hu
27
4
0
16 Oct 2023
Projective Manifold Gradient Layer for Deep Rotation Regression
Jiayi Chen
Yingda Yin
Tolga Birdal
Baoquan Chen
Leonidas J. Guibas
He-Nan Wang
47
33
0
22 Oct 2021
The Impact of Machine Learning on 2D/3D Registration for Image-guided Interventions: A Systematic Review and Perspective
Mathias Unberath
Cong Gao
Yicheng Hu
Max Judish
Russell H. Taylor
Mehran Armand
Robert Grupp
26
66
0
04 Aug 2021
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Maxime W. Lafarge
Erik J. Bekkers
J. Pluim
R. Duits
M. Veta
MedIm
27
74
0
20 Feb 2020
L6DNet: Light 6 DoF Network for Robust and Precise Object Pose Estimation with Small Datasets
Mathieu Gonzalez
Amine Kacete
Albert Murienne
É. Marchand
3DH
27
9
0
03 Feb 2020
geomstats: a Python Package for Riemannian Geometry in Machine Learning
Nina Miolane
Johan Mathe
Claire Donnat
Mikael Jorda
Xavier Pennec
AI4CE
37
123
0
21 May 2018
1