Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.10306
Cited By
Universal approximations of invariant maps by neural networks
26 April 2018
Dmitry Yarotsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Universal approximations of invariant maps by neural networks"
50 / 134 papers shown
Title
Lie Group Symmetry Discovery and Enforcement Using Vector Fields
Ben Shaw
Sasidhar Kunapuli
Abram Magner
Kevin R. Moon
29
0
0
13 May 2025
Permutation Equivariant Neural Networks for Symmetric Tensors
Edward Pearce-Crump
53
0
0
14 Mar 2025
Rethinking Addressing in Language Models via Contexualized Equivariant Positional Encoding
Jiajun Zhu
Peihao Wang
Ruisi Cai
Jason D. Lee
Pan Li
Zhilin Wang
KELM
45
1
0
03 Jan 2025
Stability of sorting based embeddings
Radu Balan
Efstratios Tsoukanis
Matthias Wellershoff
23
2
0
07 Oct 2024
Towards Better Generalization: Weight Decay Induces Low-rank Bias for Neural Networks
Ke Chen
Chugang Yi
Haizhao Yang
MLT
27
0
0
03 Oct 2024
Variational Source-Channel Coding for Semantic Communication
Yulong Feng
Jing Xu
Liujun Hu
Guanghui Yu
Xiangyang Duan
25
0
0
26 Sep 2024
Decomposition of Equivariant Maps via Invariant Maps: Application to Universal Approximation under Symmetry
Akiyoshi Sannai
Yuuki Takai
Matthieu Cordonnier
178
0
0
25 Sep 2024
Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg
Tycho F. A. van der Ouderaa
Mark van der Wilk
Y. Gal
AAML
37
4
0
10 Aug 2024
Scale Equivariant Graph Metanetworks
Ioannis Kalogeropoulos
Giorgos Bouritsas
Yannis Panagakis
44
6
0
15 Jun 2024
Separation Power of Equivariant Neural Networks
Marco Pacini
Xiaowen Dong
Bruno Lepri
G. Santin
31
0
0
13 Jun 2024
Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency
Yuchao Lin
Jacob Helwig
Shurui Gui
Shuiwang Ji
42
7
0
11 Jun 2024
Learning Long Range Dependencies on Graphs via Random Walks
Dexiong Chen
Till Hendrik Schulz
Karsten Borgwardt
34
2
0
05 Jun 2024
Learning equivariant tensor functions with applications to sparse vector recovery
Wilson Gregory
Josué Tonelli-Cueto
Nicholas F. Marshall
Andrew S. Lee
Soledad Villar
39
1
0
03 Jun 2024
A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction
Keqiang Yan
Alexandra Saxton
Xiaofeng Qian
Xiaoning Qian
Shuiwang Ji
39
6
0
03 Jun 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
50
2
0
30 May 2024
Equivariant Frames and the Impossibility of Continuous Canonicalization
Nadav Dym
Hannah Lawrence
Jonathan W. Siegel
41
17
0
25 Feb 2024
A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
43
4
0
25 Feb 2024
G-RepsNet: A Fast and General Construction of Equivariant Networks for Arbitrary Matrix Groups
Sourya Basu
Suhas Lohit
Matthew Brand
42
0
0
23 Feb 2024
Which Frequencies do CNNs Need? Emergent Bottleneck Structure in Feature Learning
Yuxiao Wen
Arthur Jacot
58
6
0
12 Feb 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
41
1
0
05 Feb 2024
A Characterization Theorem for Equivariant Networks with Point-wise Activations
Marco Pacini
Xiaowen Dong
Bruno Lepri
G. Santin
44
2
0
17 Jan 2024
Neural Collapse for Cross-entropy Class-Imbalanced Learning with Unconstrained ReLU Feature Model
Hien Dang
Tho Tran
Tan Minh Nguyen
Nhat Ho
22
11
0
04 Jan 2024
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Derek Lim
Joshua Robinson
Stefanie Jegelka
Haggai Maron
71
16
0
04 Dec 2023
Learning Polynomial Problems with
S
L
(
2
,
R
)
SL(2,\mathbb{R})
S
L
(
2
,
R
)
Equivariance
Hannah Lawrence
Mitchell Tong Harris
27
1
0
04 Dec 2023
Machine Learning for the identification of phase-transitions in interacting agent-based systems: a Desai-Zwanzig example
N. Evangelou
Dimitrios G. Giovanis
George A. Kevrekidis
G. Pavliotis
Ioannis G. Kevrekidis
11
0
0
29 Oct 2023
Efficient Model-Agnostic Multi-Group Equivariant Networks
Razan Baltaji
Sourya Basu
L. Varshney
32
1
0
14 Oct 2023
Improving Equivariance in State-of-the-Art Supervised Depth and Normal Predictors
Yuanyi Zhong
Anand Bhattad
Yu-Xiong Wang
David Forsyth
MDE
26
2
0
28 Sep 2023
Neural approximation of Wasserstein distance via a universal architecture for symmetric and factorwise group invariant functions
Samantha Chen
Yusu Wang
20
3
0
01 Aug 2023
Polynomial Width is Sufficient for Set Representation with High-dimensional Features
Peihao Wang
Shenghao Yang
Shu Li
Zhangyang Wang
Pan Li
19
3
0
08 Jul 2023
Sumformer: Universal Approximation for Efficient Transformers
Silas Alberti
Niclas Dern
L. Thesing
Gitta Kutyniok
21
16
0
05 Jul 2023
Learning Lie Group Symmetry Transformations with Neural Networks
Alex Gabel
Victoria G Klein
Riccardo Valperga
J. Lamb
K. Webster
Rick Quax
E. Gavves
27
5
0
04 Jul 2023
Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance
Jinwoo Kim
Tien Dat Nguyen
Ayhan Suleymanzade
Hyeokjun An
Seunghoon Hong
50
23
0
05 Jun 2023
Universal approximation with complex-valued deep narrow neural networks
Paul Geuchen
Thomas Jahn
Hannes Matt
13
3
0
26 May 2023
Efficient Equivariant Transfer Learning from Pretrained Models
Sourya Basu
Pulkit Katdare
P. Sattigeri
Vijil Chenthamarakshan
Katherine Driggs Campbell
Payel Das
L. Varshney
40
7
0
17 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
34
55
0
28 Apr 2023
The Exact Sample Complexity Gain from Invariances for Kernel Regression
B. Tahmasebi
Stefanie Jegelka
28
17
0
24 Mar 2023
Anti-symmetric Barron functions and their approximation with sums of determinants
Nilin Abrahamsen
Lin Lin
25
4
0
22 Mar 2023
A General Theory of Correct, Incorrect, and Extrinsic Equivariance
Dian Wang
Xu Zhu
Jung Yeon Park
Mingxi Jia
Guanang Su
Robert W. Platt
Robin G. Walters
26
13
0
08 Mar 2023
A Brief Survey on the Approximation Theory for Sequence Modelling
Hao Jiang
Qianxiao Li
Zhong Li
Shida Wang
AI4TS
30
12
0
27 Feb 2023
Invariant Layers for Graphs with Nodes of Different Types
Dmitry Rybin
Ruoyu Sun
Zhimin Luo
23
0
0
27 Feb 2023
Equivariant and Steerable Neural Networks: A review with special emphasis on the symmetric group
Patrick Krüger
Hanno Gottschalk
24
1
0
08 Jan 2023
Invariance-Aware Randomized Smoothing Certificates
Jan Schuchardt
Stephan Günnemann
AAML
28
5
0
25 Nov 2022
On the Universal Approximation Property of Deep Fully Convolutional Neural Networks
Ting-Wei Lin
Zuowei Shen
Qianxiao Li
34
4
0
25 Nov 2022
Equivariance with Learned Canonicalization Functions
Sekouba Kaba
Arnab Kumar Mondal
Yan Zhang
Yoshua Bengio
Siamak Ravanbakhsh
44
62
0
11 Nov 2022
On the Approximation and Complexity of Deep Neural Networks to Invariant Functions
Gao Zhang
Jin-Hui Wu
Shao-Qun Zhang
16
0
0
27 Oct 2022
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
32
2
0
17 Oct 2022
Theory for Equivariant Quantum Neural Networks
Quynh T. Nguyen
Louis Schatzki
Paolo Braccia
Michael Ragone
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
37
89
0
16 Oct 2022
Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models
Sourya Basu
P. Sattigeri
K. Ramamurthy
Vijil Chenthamarakshan
Kush R. Varshney
L. Varshney
Payel Das
8
18
0
13 Oct 2022
Deep Invertible Approximation of Topologically Rich Maps between Manifolds
Michael Puthawala
Matti Lassas
Ivan Dokmanić
Pekka Pankka
Maarten V. de Hoop
MedIm
26
0
0
02 Oct 2022
Machine learning and invariant theory
Ben Blum-Smith
Soledad Villar
AI4CE
36
16
0
29 Sep 2022
1
2
3
Next