ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.10204
  4. Cited By
End-to-End Speech Separation with Unfolded Iterative Phase
  Reconstruction

End-to-End Speech Separation with Unfolded Iterative Phase Reconstruction

26 April 2018
Zhong-Qiu Wang
Jonathan Le Roux
DeLiang Wang
J. Hershey
ArXivPDFHTML

Papers citing "End-to-End Speech Separation with Unfolded Iterative Phase Reconstruction"

27 / 27 papers shown
Title
A Neural State-Space Model Approach to Efficient Speech Separation
A Neural State-Space Model Approach to Efficient Speech Separation
Chen Chen
Chao-Han Huck Yang
Kai Li
Yuchen Hu
Pin-Jui Ku
Chng Eng Siong
28
11
0
26 May 2023
A Composite T60 Regression and Classification Approach for Speech
  Dereverberation
A Composite T60 Regression and Classification Approach for Speech Dereverberation
Yuying Li
Yuchen Liu
Donald S.Williamson
21
2
0
09 Feb 2023
TF-GridNet: Integrating Full- and Sub-Band Modeling for Speech
  Separation
TF-GridNet: Integrating Full- and Sub-Band Modeling for Speech Separation
Zhongqiu Wang
Samuele Cornell
Shukjae Choi
Younglo Lee
Byeonghak Kim
Shinji Watanabe
27
119
0
22 Nov 2022
SkiM: Skipping Memory LSTM for Low-Latency Real-Time Continuous Speech
  Separation
SkiM: Skipping Memory LSTM for Low-Latency Real-Time Continuous Speech Separation
Chenda Li
Lei Yang
Weiqin Wang
Y. Qian
24
24
0
26 Jan 2022
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
38
225
0
23 Mar 2021
Phase recovery with Bregman divergences for audio source separation
Phase recovery with Bregman divergences for audio source separation
P. Magron
Pierre-Hugo Vial
Thomas Oberlin
Cédric Févotte
21
1
0
20 Oct 2020
Lightweight Online Noise Reduction on Embedded Devices using
  Hierarchical Recurrent Neural Networks
Lightweight Online Noise Reduction on Embedded Devices using Hierarchical Recurrent Neural Networks
Hendrik Schröter
T. Rosenkranz
Alberto N. Escalante
Pascal Zobel
Andreas K. Maier
10
6
0
23 Jun 2020
Dual-Signal Transformation LSTM Network for Real-Time Noise Suppression
Dual-Signal Transformation LSTM Network for Real-Time Noise Suppression
Nils L. Westhausen
B. Meyer
17
99
0
15 May 2020
SpEx+: A Complete Time Domain Speaker Extraction Network
SpEx+: A Complete Time Domain Speaker Extraction Network
Meng Ge
Chenglin Xu
Longbiao Wang
Chng Eng Siong
J. Dang
Haizhou Li
19
141
0
10 May 2020
A Review of Multi-Objective Deep Learning Speech Denoising Methods
A Review of Multi-Objective Deep Learning Speech Denoising Methods
A. Azarang
N. Kehtarnavaz
34
30
0
26 Mar 2020
Voice Separation with an Unknown Number of Multiple Speakers
Voice Separation with an Unknown Number of Multiple Speakers
Eliya Nachmani
Yossi Adi
Lior Wolf
20
175
0
29 Feb 2020
Wavesplit: End-to-End Speech Separation by Speaker Clustering
Wavesplit: End-to-End Speech Separation by Speaker Clustering
Neil Zeghidour
David Grangier
VLM
25
261
0
20 Feb 2020
Phase reconstruction based on recurrent phase unwrapping with deep
  neural networks
Phase reconstruction based on recurrent phase unwrapping with deep neural networks
Yoshiki Masuyama
Kohei Yatabe
Yuma Koizumi
Yasuhiro Oikawa
N. Harada
11
21
0
14 Feb 2020
Consistency-aware multi-channel speech enhancement using deep neural
  networks
Consistency-aware multi-channel speech enhancement using deep neural networks
Yoshiki Masuyama
M. Togami
Tatsuya Komatsu
16
8
0
14 Feb 2020
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal
  and Image Processing
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
28
997
0
22 Dec 2019
Mixup-breakdown: a consistency training method for improving
  generalization of speech separation models
Mixup-breakdown: a consistency training method for improving generalization of speech separation models
Max W. Y. Lam
J. Wang
Dan Su
Dong Yu
27
22
0
28 Oct 2019
On Loss Functions for Supervised Monaural Time-Domain Speech Enhancement
On Loss Functions for Supervised Monaural Time-Domain Speech Enhancement
Morten Kolbæk
Z. Tan
S. H. Jensen
Jesper Jensen
AAML
60
125
0
03 Sep 2019
A comprehensive study of speech separation: spectrogram vs waveform
  separation
A comprehensive study of speech separation: spectrogram vs waveform separation
F. Bahmaninezhad
Jian Wu
Rongzhi Gu
Shi-Xiong Zhang
Yong-mei Xu
Meng Yu
Dong Yu
31
80
0
17 May 2019
Divide and Conquer: A Deep CASA Approach to Talker-independent Monaural
  Speaker Separation
Divide and Conquer: A Deep CASA Approach to Talker-independent Monaural Speaker Separation
Yuzhou Liu
DeLiang Wang
27
157
0
25 Apr 2019
Improved Speech Separation with Time-and-Frequency Cross-domain Joint
  Embedding and Clustering
Improved Speech Separation with Time-and-Frequency Cross-domain Joint Embedding and Clustering
Gene-Ping Yang
Chao-I Tuan
Hung-yi Lee
Lin-Shan Lee
20
25
0
16 Apr 2019
Time Domain Audio Visual Speech Separation
Time Domain Audio Visual Speech Separation
Jian Wu
Yong-mei Xu
Shi-Xiong Zhang
Lianwu Chen
Meng Yu
Lei Xie
Dong Yu
20
114
0
07 Apr 2019
Deep Griffin-Lim Iteration
Deep Griffin-Lim Iteration
Yoshiki Masuyama
Kohei Yatabe
Yuma Koizumi
Yasuhiro Oikawa
N. Harada
36
55
0
10 Mar 2019
The Visual Centrifuge: Model-Free Layered Video Representations
The Visual Centrifuge: Model-Free Layered Video Representations
Jean-Baptiste Alayrac
João Carreira
Andrew Zisserman
21
48
0
04 Dec 2018
Deep Learning Based Phase Reconstruction for Speaker Separation: A
  Trigonometric Perspective
Deep Learning Based Phase Reconstruction for Speaker Separation: A Trigonometric Perspective
Zhong-Qiu Wang
Ke Tan
DeLiang Wang
50
95
0
22 Nov 2018
End-to-end Networks for Supervised Single-channel Speech Separation
End-to-end Networks for Supervised Single-channel Speech Separation
Shrikant Venkataramani
Paris Smaragdis
27
10
0
05 Oct 2018
Phasebook and Friends: Leveraging Discrete Representations for Source
  Separation
Phasebook and Friends: Leveraging Discrete Representations for Source Separation
Jonathan Le Roux
G. Wichern
Shinji Watanabe
Andy M. Sarroff
J. Hershey
11
76
0
02 Oct 2018
Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for
  Speech Separation
Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation
Yi Luo
N. Mesgarani
16
1,746
0
20 Sep 2018
1