ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.10140
  4. Cited By
Securing Distributed Gradient Descent in High Dimensional Statistical
  Learning

Securing Distributed Gradient Descent in High Dimensional Statistical Learning

26 April 2018
Lili Su
Jiaming Xu
    FedML
ArXivPDFHTML

Papers citing "Securing Distributed Gradient Descent in High Dimensional Statistical Learning"

15 / 15 papers shown
Title
Byzantine Stochastic Gradient Descent
Byzantine Stochastic Gradient Descent
Dan Alistarh
Zeyuan Allen-Zhu
Jingkai Li
FedML
46
295
0
23 Mar 2018
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
OOD
FedML
67
1,483
0
05 Mar 2018
Distributed Statistical Machine Learning in Adversarial Settings:
  Byzantine Gradient Descent
Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent
Yudong Chen
Lili Su
Jiaming Xu
FedML
26
241
0
16 May 2017
Resilience: A Criterion for Learning in the Presence of Arbitrary
  Outliers
Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers
Jacob Steinhardt
Moses Charikar
Gregory Valiant
53
138
0
15 Mar 2017
Byzantine-Tolerant Machine Learning
Byzantine-Tolerant Machine Learning
Peva Blanchard
El-Mahdi El-Mhamdi
R. Guerraoui
J. Stainer
OOD
FedML
42
70
0
08 Mar 2017
Being Robust (in High Dimensions) Can Be Practical
Being Robust (in High Dimensions) Can Be Practical
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
50
253
0
02 Mar 2017
Learning from Untrusted Data
Learning from Untrusted Data
Moses Charikar
Jacob Steinhardt
Gregory Valiant
FedML
OOD
67
293
0
07 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
253
4,620
0
18 Oct 2016
Robust Estimators in High Dimensions without the Computational
  Intractability
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
56
510
0
21 Apr 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
198
17,235
0
17 Feb 2016
SparkNet: Training Deep Networks in Spark
SparkNet: Training Deep Networks in Spark
Philipp Moritz
Robert Nishihara
Ion Stoica
Michael I. Jordan
52
169
0
19 Nov 2015
Federated Optimization:Distributed Optimization Beyond the Datacenter
Federated Optimization:Distributed Optimization Beyond the Datacenter
Jakub Konecný
H. B. McMahan
Daniel Ramage
FedML
94
733
0
11 Nov 2015
Distributed Robust Learning
Distributed Robust Learning
Jiashi Feng
Huan Xu
Shie Mannor
OOD
33
53
0
21 Sep 2014
Privacy Aware Learning
Privacy Aware Learning
John C. Duchi
Michael I. Jordan
Martin J. Wainwright
121
290
0
07 Oct 2012
Distributed GraphLab: A Framework for Machine Learning in the Cloud
Distributed GraphLab: A Framework for Machine Learning in the Cloud
Yucheng Low
Joseph E. Gonzalez
Aapo Kyrola
Danny Bickson
Carlos Guestrin
J. M. Hellerstein
GNN
FedML
61
1,069
0
26 Apr 2012
1