ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.09535
  4. Cited By
Deep Convolutional AutoEncoder-based Lossy Image Compression

Deep Convolutional AutoEncoder-based Lossy Image Compression

25 April 2018
Zhengxue Cheng
Heming Sun
Masaru Takeuchi
J. Katto
ArXivPDFHTML

Papers citing "Deep Convolutional AutoEncoder-based Lossy Image Compression"

16 / 16 papers shown
Title
Subjective Visual Quality Assessment for High-Fidelity Learning-Based Image Compression
Subjective Visual Quality Assessment for High-Fidelity Learning-Based Image Compression
Mohsen Jenadeleh
Jon Sneyers
Panqi Jia
Shima Mohammadi
Joao Ascenso
Dietmar Saupe
31
0
0
07 Apr 2025
Detecting Near-Duplicate Face Images
Detecting Near-Duplicate Face Images
Sudipta Banerjee
Arun Ross
CVBM
39
0
0
14 Aug 2024
Region of Interest Loss for Anonymizing Learned Image Compression
Region of Interest Loss for Anonymizing Learned Image Compression
Christoph Liebender
Ranulfo Bezerra
K. Ohno
Satoshi Tadokoro
3DH
39
0
0
09 Jun 2024
An autoencoder compression approach for accelerating large-scale inverse
  problems
An autoencoder compression approach for accelerating large-scale inverse problems
J. Wittmer
Jacob Badger
H. Sundar
T. Bui-Thanh
AI4CE
29
1
0
10 Apr 2023
Semantics-Empowered Communication: A Tutorial-cum-Survey
Semantics-Empowered Communication: A Tutorial-cum-Survey
Zhilin Lu
Rongpeng Li
Kun Lu
Xianfu Chen
Ekram Hossain
Zhifeng Zhao
Honggang Zhang
39
19
0
16 Dec 2022
Learning sparse auto-encoders for green AI image coding
Learning sparse auto-encoders for green AI image coding
Cyprien Gille
F. Guyard
Marc Antonini
Michel Barlaud
16
3
0
09 Sep 2022
A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate
  Compression for Split DNN Computing
A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate Compression for Split DNN Computing
Parual Datta
Nilesh A. Ahuja
V. Somayazulu
Omesh Tickoo
19
13
0
24 Aug 2022
Streaming-capable High-performance Architecture of Learned Image
  Compression Codecs
Streaming-capable High-performance Architecture of Learned Image Compression Codecs
Fang-Ju Lin
Heming Sun
J. Katto
11
1
0
02 Aug 2022
ELIC: Efficient Learned Image Compression with Unevenly Grouped
  Space-Channel Contextual Adaptive Coding
ELIC: Efficient Learned Image Compression with Unevenly Grouped Space-Channel Contextual Adaptive Coding
Dailan He
Zi Yang
Weikun Peng
Rui Ma
Hongwei Qin
Yan Wang
36
318
0
21 Mar 2022
Reducing Redundancy in the Bottleneck Representation of the Autoencoders
Reducing Redundancy in the Bottleneck Representation of the Autoencoders
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
Moncef Gabbouj
30
10
0
09 Feb 2022
Semantic-assisted image compression
Semantic-assisted image compression
Qizheng Sun
Caili Guo
Yang Yang
Jiujiu Chen
Xijun Xue
19
4
0
29 Jan 2022
Learning-Driven Lossy Image Compression; A Comprehensive Survey
Learning-Driven Lossy Image Compression; A Comprehensive Survey
Sonain Jamil
Md. Jalil Piran
Muhibur Rahman
29
36
0
23 Jan 2022
Semantic Communications: Principles and Challenges
Semantic Communications: Principles and Challenges
Zhijin Qin
Xiaoming Tao
Jianhua Lu
Wen Tong
Geoffrey Ye Li
31
338
0
30 Dec 2021
A New Image Codec Paradigm for Human and Machine Uses
A New Image Codec Paradigm for Human and Machine Uses
Sien Chen
Jian Jin
Lili Meng
Weisi Lin
Zhuo Chen
Tsui-Shan Chang
Zhen Li
Huaxiang Zhang
33
6
0
19 Dec 2021
Exploring Autoencoder-based Error-bounded Compression for Scientific
  Data
Exploring Autoencoder-based Error-bounded Compression for Scientific Data
Jinyang Liu
Sheng Di
Kai Zhao
Sian Jin
Dingwen Tao
Xin Liang
Zizhong Chen
Franck Cappello
6
49
0
25 May 2021
An analysis on the use of autoencoders for representation learning:
  fundamentals, learning task case studies, explainability and challenges
An analysis on the use of autoencoders for representation learning: fundamentals, learning task case studies, explainability and challenges
D. Charte
F. Charte
M. J. D. Jesus
Francisco Herrera
SSL
OOD
24
51
0
21 May 2020
1