ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.09458
  4. Cited By
Dynamic Few-Shot Visual Learning without Forgetting

Dynamic Few-Shot Visual Learning without Forgetting

25 April 2018
Spyros Gidaris
N. Komodakis
    VLM
ArXivPDFHTML

Papers citing "Dynamic Few-Shot Visual Learning without Forgetting"

29 / 29 papers shown
Title
Diversity-Driven Generative Dataset Distillation Based on Diffusion Model with Self-Adaptive Memory
Diversity-Driven Generative Dataset Distillation Based on Diffusion Model with Self-Adaptive Memory
Mingzhuo Li
Guang Li
Jiafeng Mao
Takahiro Ogawa
Miki Haseyama
DD
110
0
0
26 May 2025
Decoupling Classifier for Boosting Few-shot Object Detection and Instance Segmentation
Decoupling Classifier for Boosting Few-shot Object Detection and Instance Segmentation
Bin-Bin Gao
Xiaochen Chen
Z. Huang
Congchong Nie
Jun Liu
Jinxiang Lai
Guannan Jiang
Xi-Zhao Wang
Chengjie Wang
86
28
0
20 May 2025
Robust Weight Imprinting: Insights from Neural Collapse and Proxy-Based Aggregation
Robust Weight Imprinting: Insights from Neural Collapse and Proxy-Based Aggregation
Justus Westerhoff
Golzar Atefi
Mario Koddenbrock
Alexei Figueroa
Alexander Loser
Erik Rodner
Felix Alexader Gers
OffRL
79
0
0
18 Mar 2025
How Well Do Self-Supervised Methods Perform in Cross-Domain Few-Shot Learning?
How Well Do Self-Supervised Methods Perform in Cross-Domain Few-Shot Learning?
Yiyi Zhang
Ying Zheng
Xiaogang Xu
Jun Wang
SSL
74
4
0
28 Jan 2025
Distilling Long-tailed Datasets
Distilling Long-tailed Datasets
Zhenghao Zhao
Haoxuan Wang
Yuzhang Shang
Kai Wang
Yan Yan
DD
67
3
0
24 Aug 2024
HiLo: A Learning Framework for Generalized Category Discovery Robust to Domain Shifts
HiLo: A Learning Framework for Generalized Category Discovery Robust to Domain Shifts
Hongjun Wang
S. Vaze
Kai Han
112
4
0
08 Aug 2024
A Comprehensive Review of Few-shot Action Recognition
A Comprehensive Review of Few-shot Action Recognition
Yuyang Wanyan
Xiaoshan Yang
Weiming Dong
Changsheng Xu
VLM
114
3
0
20 Jul 2024
Dataset Distillation in Medical Imaging: A Feasibility Study
Dataset Distillation in Medical Imaging: A Feasibility Study
Muyang Li
Can Cui
Quan Liu
Ruining Deng
Tianyuan Yao
Marilyn Lionts
Yuankai Huo
OOD
DD
78
2
0
19 Jul 2024
ATOM: Attention Mixer for Efficient Dataset Distillation
ATOM: Attention Mixer for Efficient Dataset Distillation
Samir Khaki
A. Sajedi
Kai Wang
Lucy Z. Liu
Y. Lawryshyn
Konstantinos N. Plataniotis
100
3
0
02 May 2024
Group Distributionally Robust Dataset Distillation with Risk Minimization
Group Distributionally Robust Dataset Distillation with Risk Minimization
Saeed Vahidian
Mingyu Wang
Jianyang Gu
Vyacheslav Kungurtsev
Wei Jiang
Yiran Chen
OOD
DD
53
6
0
07 Feb 2024
Continual Adversarial Defense
Continual Adversarial Defense
Qian Wang
Yaoyao Liu
Hefei Ling
Yingwei Li
Qihao Liu
Ping Li
AAML
83
4
0
15 Dec 2023
DataDAM: Efficient Dataset Distillation with Attention Matching
DataDAM: Efficient Dataset Distillation with Attention Matching
A. Sajedi
Samir Khaki
Ehsan Amjadian
Lucy Z. Liu
Y. Lawryshyn
Konstantinos N. Plataniotis
DD
91
64
0
29 Sep 2023
Pseudo-Labeling Based Practical Semi-Supervised Meta-Training for Few-Shot Learning
Pseudo-Labeling Based Practical Semi-Supervised Meta-Training for Few-Shot Learning
Xingping Dong
Tianran Ouyang
Shengcai Liao
Bo Du
Ling Shao
58
3
0
14 Jul 2022
Low-Shot Learning from Imaginary Data
Low-Shot Learning from Imaginary Data
Yu-Xiong Wang
Ross B. Girshick
M. Hebert
Bharath Hariharan
VLM
82
676
0
16 Jan 2018
Low-Shot Learning with Imprinted Weights
Low-Shot Learning with Imprinted Weights
Qi
Matthew A. Brown
D. Lowe
VLM
30
12
0
19 Dec 2017
A Simple Neural Attentive Meta-Learner
A Simple Neural Attentive Meta-Learner
Nikhil Mishra
Mostafa Rohaninejad
Xi Chen
Pieter Abbeel
OOD
48
199
0
11 Jul 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
205
8,072
0
15 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
752
11,793
0
09 Mar 2017
Meta Networks
Meta Networks
Tsendsuren Munkhdalai
Hong-ye Yu
GNN
AI4CE
76
1,064
0
02 Mar 2017
Cosine Normalization: Using Cosine Similarity Instead of Dot Product in
  Neural Networks
Cosine Normalization: Using Cosine Similarity Instead of Dot Product in Neural Networks
Chunjie Luo
Jianfeng Zhan
Lei Wang
Qiang Yang
47
201
0
20 Feb 2017
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLL
OOD
89
3,713
0
23 Nov 2016
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
77
2,000
0
14 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
280
7,286
0
13 Jun 2016
One-shot Learning with Memory-Augmented Neural Networks
One-shot Learning with Memory-Augmented Neural Networks
Adam Santoro
Sergey Bartunov
M. Botvinick
Daan Wierstra
Timothy Lillicrap
50
525
0
19 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Deep metric learning using Triplet network
Deep metric learning using Triplet network
Elad Hoffer
Nir Ailon
SSL
DML
133
1,989
0
20 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
282
43,511
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
822
99,991
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
986
39,383
0
01 Sep 2014
1