ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.08738
  4. Cited By
Bayesian Updating and Uncertainty Quantification using Sequential
  Tempered MCMC with the Rank-One Modified Metropolis Algorithm

Bayesian Updating and Uncertainty Quantification using Sequential Tempered MCMC with the Rank-One Modified Metropolis Algorithm

23 April 2018
T. Catanach
J. Beck
ArXivPDFHTML

Papers citing "Bayesian Updating and Uncertainty Quantification using Sequential Tempered MCMC with the Rank-One Modified Metropolis Algorithm"

2 / 2 papers shown
Title
Generalized Transitional Markov Chain Monte Carlo Sampling Technique for
  Bayesian Inversion
Generalized Transitional Markov Chain Monte Carlo Sampling Technique for Bayesian Inversion
Han Lu
Mohammad Khalil
T. Catanach
Jiefu Chen
Xuqing Wu
Xin Fu
C. Safta
Yueqin Huang
17
0
0
03 Dec 2021
Bayesian inference of Stochastic reaction networks using Multifidelity
  Sequential Tempered Markov Chain Monte Carlo
Bayesian inference of Stochastic reaction networks using Multifidelity Sequential Tempered Markov Chain Monte Carlo
T. Catanach
Huy D. Vo
B. Munsky
25
12
0
06 Jan 2020
1