ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.07899
  4. Cited By
Unsupervised Natural Language Generation with Denoising Autoencoders

Unsupervised Natural Language Generation with Denoising Autoencoders

21 April 2018
Markus Freitag
Scott Roy
ArXivPDFHTML

Papers citing "Unsupervised Natural Language Generation with Denoising Autoencoders"

9 / 9 papers shown
Title
Data-efficient Performance Modeling via Pre-training
Data-efficient Performance Modeling via Pre-training
Chunting Liu
Riyadh Baghdadi
57
0
0
24 Jan 2025
Innovations in Neural Data-to-text Generation: A Survey
Innovations in Neural Data-to-text Generation: A Survey
Mandar Sharma
Ajay K. Gogineni
Naren Ramakrishnan
41
10
0
25 Jul 2022
SCARF: Self-Supervised Contrastive Learning using Random Feature
  Corruption
SCARF: Self-Supervised Contrastive Learning using Random Feature Corruption
Dara Bahri
Heinrich Jiang
Yi Tay
Donald Metzler
SSL
28
164
0
29 Jun 2021
Natural Language Generation Using Link Grammar for General
  Conversational Intelligence
Natural Language Generation Using Link Grammar for General Conversational Intelligence
Vignav Ramesh
Anton Kolonin
19
2
0
19 Apr 2021
Data Augmentation for Voice-Assistant NLU using BERT-based
  Interchangeable Rephrase
Data Augmentation for Voice-Assistant NLU using BERT-based Interchangeable Rephrase
Akhila Yerukola
Mason Bretan
Hongxia Jin
30
3
0
16 Apr 2021
Semi-Supervised Text Simplification with Back-Translation and Asymmetric
  Denoising Autoencoders
Semi-Supervised Text Simplification with Back-Translation and Asymmetric Denoising Autoencoders
Yanbin Zhao
Lu Chen
Zhi Chen
Kai Yu
33
38
0
30 Apr 2020
Denoising based Sequence-to-Sequence Pre-training for Text Generation
Denoising based Sequence-to-Sequence Pre-training for Text Generation
Liang Wang
Wei Zhao
Ruoyu Jia
Sujian Li
Jingming Liu
VLM
AI4CE
42
37
0
22 Aug 2019
Evaluating the State-of-the-Art of End-to-End Natural Language
  Generation: The E2E NLG Challenge
Evaluating the State-of-the-Art of End-to-End Natural Language Generation: The E2E NLG Challenge
Ondrej Dusek
Jekaterina Novikova
Verena Rieser
ELM
46
232
0
23 Jan 2019
End-to-End Content and Plan Selection for Data-to-Text Generation
End-to-End Content and Plan Selection for Data-to-Text Generation
Sebastian Gehrmann
Falcon Z. Dai
H. Elder
Alexander M. Rush
28
70
0
10 Oct 2018
1