Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.06561
Cited By
A Mean Field View of the Landscape of Two-Layers Neural Networks
18 April 2018
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Mean Field View of the Landscape of Two-Layers Neural Networks"
50 / 206 papers shown
Title
EPR-Net: Constructing non-equilibrium potential landscape via a variational force projection formulation
Yue Zhao
Wei Zhang
Tiejun Li
DiffM
16
8
0
05 Jan 2023
Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient Flow
Yuling Yan
Kaizheng Wang
Philippe Rigollet
44
20
0
04 Jan 2023
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
53
11
0
30 Dec 2022
The Underlying Correlated Dynamics in Neural Training
Rotem Turjeman
Tom Berkov
I. Cohen
Guy Gilboa
21
3
0
18 Dec 2022
Uniform-in-time propagation of chaos for mean field Langevin dynamics
Fan Chen
Zhenjie Ren
Song-bo Wang
43
30
0
06 Dec 2022
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
REPAIR: REnormalizing Permuted Activations for Interpolation Repair
Keller Jordan
Hanie Sedghi
O. Saukh
R. Entezari
Behnam Neyshabur
MoMe
46
94
0
15 Nov 2022
A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer Neural Networks
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
25
5
0
28 Oct 2022
Stochastic Mirror Descent in Average Ensemble Models
Taylan Kargin
Fariborz Salehi
B. Hassibi
24
1
0
27 Oct 2022
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
43
1
0
25 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
26
5
0
20 Oct 2022
Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity of Neural Networks
A. K. Akash
Sixu Li
Nicolas García Trillos
34
12
0
13 Oct 2022
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
16
8
0
12 Oct 2022
Meta-Principled Family of Hyperparameter Scaling Strategies
Sho Yaida
55
16
0
10 Oct 2022
Analysis of the rate of convergence of an over-parametrized deep neural network estimate learned by gradient descent
Michael Kohler
A. Krzyżak
32
10
0
04 Oct 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
28
5
0
19 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
39
19
0
15 Sep 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
255
314
0
11 Sep 2022
On the universal consistency of an over-parametrized deep neural network estimate learned by gradient descent
Selina Drews
Michael Kohler
30
13
0
30 Aug 2022
The Neural Race Reduction: Dynamics of Abstraction in Gated Networks
Andrew M. Saxe
Shagun Sodhani
Sam Lewallen
AI4CE
28
34
0
21 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
19
114
0
30 Jun 2022
Learning sparse features can lead to overfitting in neural networks
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
M. Wyart
MLT
42
23
0
24 Jun 2022
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation
Loucas Pillaud-Vivien
J. Reygner
Nicolas Flammarion
NoLa
33
31
0
20 Jun 2022
Unbiased Estimation using Underdamped Langevin Dynamics
Hamza Ruzayqat
Neil K. Chada
Ajay Jasra
33
4
0
14 Jun 2022
High-dimensional limit theorems for SGD: Effective dynamics and critical scaling
Gerard Ben Arous
Reza Gheissari
Aukosh Jagannath
59
58
0
08 Jun 2022
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
21
58
0
02 Jun 2022
PSO-Convolutional Neural Networks with Heterogeneous Learning Rate
N. H. Phong
A. Santos
B. Ribeiro
21
8
0
20 May 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
C. Pehlevan
MLT
34
78
0
19 May 2022
Sharp asymptotics on the compression of two-layer neural networks
Mohammad Hossein Amani
Simone Bombari
Marco Mondelli
Rattana Pukdee
Stefano Rini
MLT
24
0
0
17 May 2022
Mean-Field Nonparametric Estimation of Interacting Particle Systems
Rentian Yao
Xiaohui Chen
Yun Yang
43
9
0
16 May 2022
Trajectory Inference via Mean-field Langevin in Path Space
Lénaïc Chizat
Stephen X. Zhang
Matthieu Heitz
Geoffrey Schiebinger
31
21
0
14 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
37
121
0
03 May 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
36
13
0
22 Apr 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
32
13
0
22 Mar 2022
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
21
15
0
03 Mar 2022
A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling
Katy Craig
Karthik Elamvazhuthi
M. Haberland
O. Turanova
35
15
0
25 Feb 2022
Provably convergent quasistatic dynamics for mean-field two-player zero-sum games
Chao Ma
Lexing Ying
MLT
32
11
0
15 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
Simultaneous Transport Evolution for Minimax Equilibria on Measures
Carles Domingo-Enrich
Joan Bruna
16
3
0
14 Feb 2022
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
R. Veiga
Ludovic Stephan
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
MLT
10
31
0
01 Feb 2022
Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks
Bartlomiej Polaczyk
J. Cyranka
ODL
33
3
0
28 Jan 2022
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
68
64
0
25 Jan 2022
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Tao Luo
FaML
33
66
0
19 Jan 2022
Convergence of Policy Gradient for Entropy Regularized MDPs with Neural Network Approximation in the Mean-Field Regime
B. Kerimkulov
J. Leahy
David Siska
Lukasz Szpruch
27
11
0
18 Jan 2022
Neural Capacitance: A New Perspective of Neural Network Selection via Edge Dynamics
Chunheng Jiang
Tejaswini Pedapati
Pin-Yu Chen
Yizhou Sun
Jianxi Gao
24
2
0
11 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Z. Ringel
30
50
0
31 Dec 2021
Asymptotic properties of one-layer artificial neural networks with sparse connectivity
Christian Hirsch
Matthias Neumann
Volker Schmidt
19
1
0
01 Dec 2021
DNN gradient lossless compression: Can GenNorm be the answer?
Zhongzhu Chen
Eduin E. Hernandez
Yu-Chih Huang
Stefano Rini
28
9
0
15 Nov 2021
Efficient Neural Network Training via Forward and Backward Propagation Sparsification
Xiao Zhou
Weizhong Zhang
Zonghao Chen
Shizhe Diao
Tong Zhang
32
46
0
10 Nov 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
A. Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
36
13
0
03 Nov 2021
Previous
1
2
3
4
5
Next