ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.05320
22
4
v1v2 (latest)

Generative Adversarial Network based Autoencoder: Application to fault detection problem for closed loop dynamical systems

15 April 2018
Indrasis Chakraborty
Rudrasis Chakraborty
D. Vrabie
    DRLAI4CE
ArXiv (abs)PDFHTML
Abstract

Fault detection problem for closed loop uncertain dynamical systems, is investigated in this paper, using different deep learning based methods. Traditional classifier based method does not perform well, because of the inherent difficulty of detecting system level faults for closed loop dynamical system. Specifically, acting controller in any closed loop dynamical system, works to reduce the effect of system level faults. A novel Generative Adversarial based deep Autoencoder is designed to classify datasets under normal and faulty operating conditions. This proposed network performs significantly well when compared to any available classifier based methods, and moreover, does not require labeled fault incorporated datasets for training purpose. Finally, this aforementioned network's performance is tested on a high complexity building energy system dataset.

View on arXiv
Comments on this paper