ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.05146
  4. Cited By
A comparison of methods for model selection when estimating individual
  treatment effects

A comparison of methods for model selection when estimating individual treatment effects

14 April 2018
Alejandro Schuler
M. Baiocchi
Robert Tibshirani
N. Shah
    CML
ArXivPDFHTML

Papers citing "A comparison of methods for model selection when estimating individual treatment effects"

12 / 12 papers shown
Title
Causal Q-Aggregation for CATE Model Selection
Causal Q-Aggregation for CATE Model Selection
Hui Lan
Vasilis Syrgkanis
CML
50
4
0
25 Oct 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
76
2
0
16 Oct 2023
How to select predictive models for causal inference?
How to select predictive models for causal inference?
M. Doutreligne
Gaël Varoquaux
ELM
CML
29
2
0
01 Feb 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
32
1
0
16 Jan 2023
Efficient Heterogeneous Treatment Effect Estimation With Multiple
  Experiments and Multiple Outcomes
Efficient Heterogeneous Treatment Effect Estimation With Multiple Experiments and Multiple Outcomes
Leon Yao
Caroline Lo
Israel Nir
S. Tan
Ariel Evnine
Adam Lerer
A. Peysakhovich
CML
29
6
0
10 Jun 2022
Meta-Analysis of Randomized Experiments with Applications to
  Heavy-Tailed Response Data
Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data
Nilesh Tripuraneni
Dhruv Madeka
Dean Phillips Foster
Dominique C. Perrault-Joncas
Michael I. Jordan
26
5
0
14 Dec 2021
A pragmatic approach to estimating average treatment effects from EHR
  data: the effect of prone positioning on mechanically ventilated COVID-19
  patients
A pragmatic approach to estimating average treatment effects from EHR data: the effect of prone positioning on mechanically ventilated COVID-19 patients
A. Izdebski
P. Thoral
R. Lalisang
Dean McHugh
D. Gommers
...
Rutger van Raalte
M. V. Tellingen
Niels C. Gritters van den Oever
Paul Elbers
Giovanni Cina
CML
16
0
0
14 Sep 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal
  Assumptions
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
26
26
0
27 Aug 2021
Causal Decision Making and Causal Effect Estimation Are Not the Same...
  and Why It Matters
Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters
Carlos Fernández-Loría
F. Provost
CML
19
43
0
08 Apr 2021
Estimating Individual Treatment Effects using Non-Parametric Regression
  Models: a Review
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
A. Caron
G. Baio
I. Manolopoulou
CML
33
52
0
14 Sep 2020
Learning Counterfactual Representations for Estimating Individual
  Dose-Response Curves
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves
Patrick Schwab
Lorenz Linhardt
Stefan Bauer
J. M. Buhmann
W. Karlen
CML
OOD
34
132
0
03 Feb 2019
Perfect Match: A Simple Method for Learning Representations For
  Counterfactual Inference With Neural Networks
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks
Patrick Schwab
Lorenz Linhardt
W. Karlen
CML
BDL
21
111
0
01 Oct 2018
1