Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.04272
Cited By
Deep Neural Networks Motivated by Partial Differential Equations
12 April 2018
Lars Ruthotto
E. Haber
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks Motivated by Partial Differential Equations"
24 / 24 papers shown
Title
Flowing Through Layers: A Continuous Dynamical Systems Perspective on Transformers
Jacob Fein-Ashley
AI4CE
104
0
0
08 Feb 2025
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
119
1
0
17 Sep 2024
Learning Regularization for Graph Inverse Problems
Moshe Eliasof
Md Shahriar Rahim Siddiqui
Carola-Bibiane Schönlieb
Eldad Haber
GNN
160
0
0
19 Aug 2024
Large-time asymptotics in deep learning
Carlos Esteve
Borjan Geshkovski
Dario Pighin
Enrique Zuazua
332
34
0
06 Aug 2020
LeanConvNets: Low-cost Yet Effective Convolutional Neural Networks
Jonathan Ephrath
Moshe Eliasof
Lars Ruthotto
E. Haber
Eran Treister
99
16
0
29 Oct 2019
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
411
5,103
0
19 Jun 2018
Multi-level Residual Networks from Dynamical Systems View
B. Chang
Lili Meng
E. Haber
Frederick Tung
David Begert
77
172
0
27 Oct 2017
Maximum Principle Based Algorithms for Deep Learning
Qianxiao Li
Long Chen
Cheng Tai
E. Weinan
99
223
0
26 Oct 2017
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
B. Chang
Lili Meng
E. Haber
Lars Ruthotto
David Begert
E. Holtham
AI4CE
74
264
0
12 Sep 2017
The Reversible Residual Network: Backpropagation Without Storing Activations
Aidan Gomez
Mengye Ren
R. Urtasun
Roger C. Grosse
74
548
0
14 Jul 2017
DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei
Yinzhi Cao
Junfeng Yang
Suman Jana
AAML
82
1,366
0
18 May 2017
Stable Architectures for Deep Neural Networks
E. Haber
Lars Ruthotto
145
728
0
09 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
136
807
0
28 Apr 2017
Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
G. Carlier
135
154
0
17 Apr 2017
Learning across scales - A multiscale method for Convolution Neural Networks
E. Haber
Lars Ruthotto
E. Holtham
Seong-Hwan Jun
50
23
0
06 Mar 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
136
2,528
0
26 Oct 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
337
7,984
0
23 May 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
354
10,182
0
16 Mar 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
A General Framework for Constrained Bayesian Optimization using Information-based Search
José Miguel Hernández-Lobato
M. Gelbart
Ryan P. Adams
Matthew W. Hoffman
Zoubin Ghahramani
50
165
0
30 Nov 2015
Convolutional Clustering for Unsupervised Learning
Aysegül Dündar
Jonghoon Jin
Eugenio Culurciello
SSL
41
84
0
19 Nov 2015
Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration
Yunjin Chen
Thomas Pock
DiffM
50
1,188
0
12 Aug 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,289
0
11 Feb 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,049
0
20 Dec 2014
1