Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.03193
Cited By
An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks
9 April 2018
Pu Zhao
Sijia Liu
Yanzhi Wang
X. Lin
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks"
7 / 7 papers shown
Title
Attacks in Adversarial Machine Learning: A Systematic Survey from the Life-cycle Perspective
Baoyuan Wu
Zihao Zhu
Li Liu
Qingshan Liu
Zhaofeng He
Siwei Lyu
AAML
46
21
0
19 Feb 2023
Transferable Sparse Adversarial Attack
Ziwen He
Wei Wang
Jing Dong
Tieniu Tan
AAML
19
20
0
31 May 2021
Defending Adversarial Examples via DNN Bottleneck Reinforcement
Wenqing Liu
Miaojing Shi
Teddy Furon
Li Li
AAML
26
8
0
12 Aug 2020
Towards Understanding the Adversarial Vulnerability of Skeleton-based Action Recognition
Tianhang Zheng
Sheng Liu
Changyou Chen
Junsong Yuan
Baochun Li
K. Ren
AAML
21
17
0
14 May 2020
Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness
Pu Zhao
Pin-Yu Chen
Payel Das
Karthikeyan N. Ramamurthy
Xue Lin
AAML
58
185
0
30 Apr 2020
Protecting Neural Networks with Hierarchical Random Switching: Towards Better Robustness-Accuracy Trade-off for Stochastic Defenses
Tianlin Li
Siyue Wang
Pin-Yu Chen
Yanzhi Wang
Brian Kulis
Xue Lin
S. Chin
AAML
16
42
0
20 Aug 2019
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
317
5,847
0
08 Jul 2016
1