Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.02485
Cited By
Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations
7 April 2018
Alex Lamb
Jonathan Binas
Anirudh Goyal
Dmitriy Serdyuk
Sandeep Subramanian
Ioannis Mitliagkas
Yoshua Bengio
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations"
23 / 23 papers shown
Title
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
49
71
0
26 Mar 2022
Robust Upper Bounds for Adversarial Training
Dimitris Bertsimas
Xavier Boix
Kimberly Villalobos Carballo
D. Hertog
AAML
35
0
0
17 Dec 2021
Holistic Deep Learning
Dimitris Bertsimas
Kimberly Villalobos Carballo
L. Boussioux
M. Li
Alex Paskov
I. Paskov
27
1
0
29 Oct 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
32
65
0
09 Apr 2021
FADER: Fast Adversarial Example Rejection
Francesco Crecchi
Marco Melis
Angelo Sotgiu
D. Bacciu
Battista Biggio
AAML
14
15
0
18 Oct 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
24
155
0
08 Sep 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
25
73
0
07 Aug 2020
TEAM: We Need More Powerful Adversarial Examples for DNNs
Yaguan Qian
Xi-Ming Zhang
Bin Wang
Wei Li
Zhaoquan Gu
Haijiang Wang
Wassim Swaileh
AAML
27
0
0
31 Jul 2020
Can Attention Masks Improve Adversarial Robustness?
Pratik Vaishnavi
Tianji Cong
Kevin Eykholt
A. Prakash
Amir Rahmati
AAML
11
12
0
27 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
13
103
0
13 Nov 2019
State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations
Alex Lamb
Jonathan Binas
Anirudh Goyal
Sandeep Subramanian
Ioannis Mitliagkas
Denis Kazakov
Yoshua Bengio
Michael C. Mozer
OOD
16
3
0
26 May 2019
Weight Map Layer for Noise and Adversarial Attack Robustness
Mohammed Amer
Tomás Maul
12
4
0
02 May 2019
ZK-GanDef: A GAN based Zero Knowledge Adversarial Training Defense for Neural Networks
Guanxiong Liu
Issa M. Khalil
Abdallah Khreishah
AAML
16
18
0
17 Apr 2019
GanDef: A GAN based Adversarial Training Defense for Neural Network Classifier
Guanxiong Liu
Issa M. Khalil
Abdallah Khreishah
GAN
AAML
27
19
0
06 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
191
273
0
03 Dec 2018
Adversarial Gain
Peter Henderson
Koustuv Sinha
Nan Rosemary Ke
Joelle Pineau
AAML
16
0
0
04 Nov 2018
Adversarial Examples - A Complete Characterisation of the Phenomenon
A. Serban
E. Poll
Joost Visser
SILM
AAML
25
49
0
02 Oct 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Robustifying Models Against Adversarial Attacks by Langevin Dynamics
Vignesh Srinivasan
Arturo Marbán
K. Müller
Wojciech Samek
Shinichi Nakajima
AAML
17
9
0
30 May 2018
Deep Active Learning for Anomaly Detection
Tiago Pimentel
Marianne Monteiro
Adriano Veloso
N. Ziviani
24
39
0
23 May 2018
Robust Conditional Generative Adversarial Networks
Grigorios G. Chrysos
Jean Kossaifi
S. Zafeiriou
GAN
27
30
0
22 May 2018
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,110
0
04 Nov 2016
1