ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.01736
  4. Cited By
Missing Slice Recovery for Tensors Using a Low-rank Model in Embedded
  Space

Missing Slice Recovery for Tensors Using a Low-rank Model in Embedded Space

5 April 2018
Tatsuya Yokota
B. Erem
Seyhmus Guler
Simon K. Warfield
H. Hontani
ArXiv (abs)PDFHTML

Papers citing "Missing Slice Recovery for Tensors Using a Low-rank Model in Embedded Space"

5 / 5 papers shown
Title
Low-rank tensor completion: a Riemannian manifold preconditioning
  approach
Low-rank tensor completion: a Riemannian manifold preconditioning approach
Hiroyuki Kasai
Bamdev Mishra
43
119
0
26 May 2016
Smooth PARAFAC Decomposition for Tensor Completion
Smooth PARAFAC Decomposition for Tensor Completion
Tatsuya Yokota
Qibin Zhao
A. Cichocki
67
250
0
25 May 2015
Bayesian CP Factorization of Incomplete Tensors with Automatic Rank
  Determination
Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination
Qibin Zhao
Liqing Zhang
A. Cichocki
237
525
0
25 Jan 2014
Low-rank optimization with trace norm penalty
Low-rank optimization with trace norm penalty
Bamdev Mishra
Gilles Meyer
Francis R. Bach
R. Sepulchre
92
127
0
11 Dec 2011
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear
  Norm Minimization
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
Benjamin Recht
Maryam Fazel
P. Parrilo
421
3,773
0
28 Jun 2007
1