Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.09160
Cited By
Handling Adversarial Concept Drift in Streaming Data
24 March 2018
Tegjyot Singh Sethi
M. Kantardzic
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Handling Adversarial Concept Drift in Streaming Data"
11 / 11 papers shown
Title
Security Theater: On the Vulnerability of Classifiers to Exploratory Attacks
Tegjyot Singh Sethi
M. Kantardzic
J. Ryu
AAML
72
11
0
24 Mar 2018
Security Evaluation of Pattern Classifiers under Attack
Battista Biggio
Giorgio Fumera
Fabio Roli
AAML
62
443
0
02 Sep 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
155
2,147
0
21 Aug 2017
On the Reliable Detection of Concept Drift from Streaming Unlabeled Data
Tegjyot Singh Sethi
M. Kantardzic
33
177
0
31 Mar 2017
Data Driven Exploratory Attacks on Black Box Classifiers in Adversarial Domains
Tegjyot Singh Sethi
M. Kantardzic
AAML
88
49
0
23 Mar 2017
Fraternal Twins: Unifying Attacks on Machine Learning and Digital Watermarking
Erwin Quiring
Dan Arp
Konrad Rieck
AAML
49
6
0
16 Mar 2017
Towards the Science of Security and Privacy in Machine Learning
Nicolas Papernot
Patrick McDaniel
Arunesh Sinha
Michael P. Wellman
AAML
77
474
0
11 Nov 2016
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
102
1,804
0
09 Sep 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
112
1,740
0
24 May 2016
Exponentially Weighted Moving Average Charts for Detecting Concept Drift
Gordon J. Ross
N. Adams
D. Tasoulis
D. Hand
68
371
0
25 Dec 2012
Learning under Concept Drift: an Overview
Indrė Žliobaitė
84
454
0
22 Oct 2010
1