ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.08700
  4. Cited By
Determinantal Point Processes for Coresets

Determinantal Point Processes for Coresets

23 March 2018
Nicolas M Tremblay
Simon Barthelmé
P. Amblard
ArXivPDFHTML

Papers citing "Determinantal Point Processes for Coresets"

26 / 26 papers shown
Title
Exact sampling of determinantal point processes with sublinear time
  preprocessing
Exact sampling of determinantal point processes with sublinear time preprocessing
Michal Derezinski
Daniele Calandriello
Michal Valko
45
55
0
31 May 2019
Approximating Spectral Clustering via Sampling: a Review
Approximating Spectral Clustering via Sampling: a Review
Nicolas M Tremblay
Andreas Loukas
57
45
0
29 Jan 2019
A determinantal point process for column subset selection
A determinantal point process for column subset selection
Ayoub Belhadji
Rémi Bardenet
P. Chainais
27
28
0
23 Dec 2018
Reverse iterative volume sampling for linear regression
Reverse iterative volume sampling for linear regression
Michal Derezinski
Manfred K. Warmuth
66
43
0
06 Jun 2018
Asymptotic Equivalence of Fixed-size and Varying-size Determinantal
  Point Processes
Asymptotic Equivalence of Fixed-size and Varying-size Determinantal Point Processes
Simon Barthelmé
P. Amblard
Nicolas M Tremblay
50
10
0
05 Mar 2018
Optimized Algorithms to Sample Determinantal Point Processes
Optimized Algorithms to Sample Determinantal Point Processes
Nicolas M Tremblay
Simon Barthelmé
P. Amblard
37
16
0
23 Feb 2018
Leveraged volume sampling for linear regression
Leveraged volume sampling for linear regression
Michal Derezinski
Manfred K. Warmuth
Daniel J. Hsu
35
58
0
19 Feb 2018
Lectures on Randomized Numerical Linear Algebra
Lectures on Randomized Numerical Linear Algebra
P. Drineas
Michael W. Mahoney
34
76
0
24 Dec 2017
One-Shot Coresets: The Case of k-Clustering
One-Shot Coresets: The Case of k-Clustering
Olivier Bachem
Mario Lucic
Silvio Lattanzi
37
40
0
27 Nov 2017
Zonotope hit-and-run for efficient sampling from projection DPPs
Zonotope hit-and-run for efficient sampling from projection DPPs
G. Gautier
Rémi Bardenet
Michal Valko
47
18
0
30 May 2017
Practical Coreset Constructions for Machine Learning
Practical Coreset Constructions for Machine Learning
Olivier Bachem
Mario Lucic
Andreas Krause
62
185
0
19 Mar 2017
The empirical Christoffel function with applications in data analysis
The empirical Christoffel function with applications in data analysis
J. Lasserre
Edouard Pauwels
28
10
0
11 Jan 2017
Compressive K-means
Compressive K-means
Nicolas Keriven
Nicolas M Tremblay
Y. Traonmilin
Rémi Gribonval
51
53
0
27 Oct 2016
Linear-time Outlier Detection via Sensitivity
Linear-time Outlier Detection via Sensitivity
Mario Lucic
Olivier Bachem
Andreas Krause
33
13
0
02 May 2016
Monte Carlo with Determinantal Point Processes
Monte Carlo with Determinantal Point Processes
Rémi Bardenet
A. Hardy
45
79
0
02 May 2016
Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh
  Distributions and Determinantal Point Processes
Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes
Nima Anari
S. Gharan
A. Rezaei
47
129
0
16 Feb 2016
A statistical perspective of sampling scores for linear regression
A statistical perspective of sampling scores for linear regression
Siheng Chen
R. Varma
Aarti Singh
J. Kovacevic
42
13
0
21 Jul 2015
On the Error of Random Fourier Features
On the Error of Random Fourier Features
Danica J. Sutherland
J. Schneider
74
192
0
09 Jun 2015
Dimensionality Reduction for k-Means Clustering and Low Rank
  Approximation
Dimensionality Reduction for k-Means Clustering and Low Rank Approximation
Michael B. Cohen
Sam Elder
Cameron Musco
Christopher Musco
Madalina Persu
111
358
0
24 Oct 2014
Distributed k-Means and k-Median Clustering on General Topologies
Distributed k-Means and k-Median Clustering on General Topologies
Maria-Florina Balcan
Steven Ehrlich
Yingyu Liang
138
124
0
03 Jun 2013
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
235
1,138
0
25 Jul 2012
Randomized Dimensionality Reduction for k-means Clustering
Randomized Dimensionality Reduction for k-means Clustering
Christos Boutsidis
Anastasios Zouzias
Michael W. Mahoney
P. Drineas
80
221
0
13 Oct 2011
Fast approximation of matrix coherence and statistical leverage
Fast approximation of matrix coherence and statistical leverage
P. Drineas
M. Magdon-Ismail
Michael W. Mahoney
David P. Woodruff
142
531
0
18 Sep 2011
A Unified Framework for Approximating and Clustering Data
A Unified Framework for Approximating and Clustering Data
Dan Feldman
M. Langberg
135
457
0
07 Jun 2011
A Bernstein-type inequality for suprema of random processes with
  applications to model selection in non-Gaussian regression
A Bernstein-type inequality for suprema of random processes with applications to model selection in non-Gaussian regression
Y. Baraud
103
28
0
10 Sep 2009
A Tutorial on Spectral Clustering
A Tutorial on Spectral Clustering
U. V. Luxburg
271
10,522
0
01 Nov 2007
1