Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.08471
Cited By
Locally Private Bayesian Inference for Count Models
22 March 2018
Aaron Schein
Zhiwei Steven Wu
Alexandra Schofield
Mingyuan Zhou
Hanna M. Wallach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Locally Private Bayesian Inference for Count Models"
10 / 10 papers shown
Title
Technical Insights and Legal Considerations for Advancing Federated Learning in Bioinformatics
Daniele Malpetti
Marco Scutari
Francesco Gualdi
Jessica van Setten
Sander van der Laan
Saskia Haitjema
Aaron Mark Lee
Isabelle Hering
Francesca Mangili
FedML
AI4CE
109
1
0
12 Mar 2025
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
99
167
0
01 Mar 2023
Data Augmentation MCMC for Bayesian Inference from Privatized Data
Nianqiao P. Ju
Jordan Awan
Ruobin Gong
Vinayak A. Rao
32
23
0
01 Jun 2022
The Skellam Mechanism for Differentially Private Federated Learning
Naman Agarwal
Peter Kairouz
Ziyu Liu
FedML
22
122
0
11 Oct 2021
Differentially Private Bayesian Inference for Generalized Linear Models
Tejas D. Kulkarni
Joonas Jälkö
A. Koskela
Samuel Kaski
Antti Honkela
35
31
0
01 Nov 2020
Differentially Private Bayesian Linear Regression
G. Bernstein
Daniel Sheldon
35
58
0
29 Oct 2019
Data-Dependent Differentially Private Parameter Learning for Directed Graphical Models
Amrita Roy Chowdhury
Theodoros Rekatsinas
S. Jha
10
10
0
30 May 2019
Profile-Based Privacy for Locally Private Computations
J. Geumlek
Kamalika Chaudhuri
21
17
0
21 Jan 2019
Differentially Private Bayesian Inference for Exponential Families
G. Bernstein
Daniel Sheldon
33
48
0
06 Sep 2018
An end-to-end Differentially Private Latent Dirichlet Allocation Using a Spectral Algorithm
Christopher DeCarolis
Mukul Ram
Seyed-Alireza Esmaeili
Yu-Xiang Wang
Furong Huang
FedML
13
12
0
25 May 2018
1