Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.08089
Cited By
Incremental Learning-to-Learn with Statistical Guarantees
21 March 2018
Giulia Denevi
C. Ciliberto
Dimitris Stamos
Massimiliano Pontil
CLL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Incremental Learning-to-Learn with Statistical Guarantees"
17 / 17 papers shown
Title
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Chen Wang
Kaiyi Ji
Junyi Geng
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Y. Yang
Xiao Lin
Zhipeng Zhao
SSL
83
9
0
28 Jan 2025
An Information-Theoretic Analysis of In-Context Learning
Hong Jun Jeon
Jason D. Lee
Qi Lei
Benjamin Van Roy
27
18
0
28 Jan 2024
Bayes meets Bernstein at the Meta Level: an Analysis of Fast Rates in Meta-Learning with PAC-Bayes
Charles Riou
Pierre Alquier
Badr-Eddine Chérief-Abdellatif
40
8
0
23 Feb 2023
Meta Representation Learning with Contextual Linear Bandits
Leonardo Cella
Karim Lounici
Massimiliano Pontil
34
5
0
30 May 2022
Nearly Minimax Algorithms for Linear Bandits with Shared Representation
Jiaqi Yang
Qi Lei
Jason D. Lee
S. Du
35
16
0
29 Mar 2022
Non-stationary Bandits and Meta-Learning with a Small Set of Optimal Arms
Javad Azizi
T. Duong
Yasin Abbasi-Yadkori
András Gyorgy
Claire Vernade
Mohammad Ghavamzadeh
28
8
0
25 Feb 2022
On the Power of Multitask Representation Learning in Linear MDP
Rui Lu
Gao Huang
S. Du
24
28
0
15 Jun 2021
Improving Few-Shot Learning through Multi-task Representation Learning Theory
Quentin Bouniot
I. Redko
Romaric Audigier
Angélique Loesch
Amaury Habrard
45
10
0
05 Oct 2020
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
50
61
0
21 Jun 2020
Meta-learning with Stochastic Linear Bandits
Leonardo Cella
A. Lazaric
Massimiliano Pontil
FedML
22
56
0
18 May 2020
Provable Representation Learning for Imitation Learning via Bi-level Optimization
Sanjeev Arora
S. Du
Sham Kakade
Yuping Luo
Nikunj Saunshi
18
60
0
24 Feb 2020
Adaptive Gradient-Based Meta-Learning Methods
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
FedML
16
353
0
06 Jun 2019
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization
Giulia Denevi
C. Ciliberto
Riccardo Grazzi
Massimiliano Pontil
20
108
0
25 Mar 2019
Provable Guarantees for Gradient-Based Meta-Learning
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
FedML
22
147
0
27 Feb 2019
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
110
716
0
13 Jun 2018
New Perspectives on k-Support and Cluster Norms
Andrew M. McDonald
Massimiliano Pontil
Dimitris Stamos
61
58
0
06 Mar 2014
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
1