ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.07617
  4. Cited By
Online Learning: Sufficient Statistics and the Burkholder Method

Online Learning: Sufficient Statistics and the Burkholder Method

20 March 2018
Dylan J. Foster
Alexander Rakhlin
Karthik Sridharan
ArXivPDFHTML

Papers citing "Online Learning: Sufficient Statistics and the Burkholder Method"

16 / 16 papers shown
Title
New Potential-Based Bounds for Prediction with Expert Advice
New Potential-Based Bounds for Prediction with Expert Advice
Vladimir A. Kobzar
R. Kohn
Zhilei Wang
118
21
0
05 Nov 2019
Black-Box Reductions for Parameter-free Online Learning in Banach Spaces
Black-Box Reductions for Parameter-free Online Learning in Banach Spaces
Ashok Cutkosky
Francesco Orabona
81
146
0
17 Feb 2018
Parameter-free online learning via model selection
Parameter-free online learning via model selection
Dylan J. Foster
Satyen Kale
M. Mohri
Karthik Sridharan
77
60
0
30 Dec 2017
ZigZag: A new approach to adaptive online learning
ZigZag: A new approach to adaptive online learning
Dylan J. Foster
Alexander Rakhlin
Karthik Sridharan
40
12
0
13 Apr 2017
Online Learning Without Prior Information
Online Learning Without Prior Information
Ashok Cutkosky
K. Boahen
ODL
39
74
0
07 Mar 2017
Online Convex Optimization with Unconstrained Domains and Losses
Online Convex Optimization with Unconstrained Domains and Losses
Ashok Cutkosky
K. Boahen
ODL
49
32
0
07 Mar 2017
Coin Betting and Parameter-Free Online Learning
Coin Betting and Parameter-Free Online Learning
Francesco Orabona
D. Pál
160
165
0
12 Feb 2016
On Equivalence of Martingale Tail Bounds and Deterministic Regret
  Inequalities
On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities
Alexander Rakhlin
Karthik Sridharan
52
48
0
13 Oct 2015
Adaptive Online Learning
Adaptive Online Learning
Dylan J. Foster
Alexander Rakhlin
Karthik Sridharan
98
51
0
21 Aug 2015
Simultaneous Model Selection and Optimization through Parameter-free
  Stochastic Learning
Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning
Francesco Orabona
134
103
0
15 Jun 2014
Sum-of-squares proofs and the quest toward optimal algorithms
Sum-of-squares proofs and the quest toward optimal algorithms
Boaz Barak
David Steurer
64
137
0
21 Apr 2014
Unconstrained Online Linear Learning in Hilbert Spaces: Minimax
  Algorithms and Normal Approximations
Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations
H. B. McMahan
Francesco Orabona
130
77
0
03 Mar 2014
Minimax Optimal Algorithms for Unconstrained Linear Optimization
Minimax Optimal Algorithms for Unconstrained Linear Optimization
H. B. McMahan
89
42
0
08 Feb 2013
Relative Loss Bounds for On-line Density Estimation with the Exponential
  Family of Distributions
Relative Loss Bounds for On-line Density Estimation with the Exponential Family of Distributions
Katy S. Azoury
Manfred K. Warmuth
156
324
0
23 Jan 2013
On the Universality of Online Mirror Descent
On the Universality of Online Mirror Descent
Nathan Srebro
Karthik Sridharan
Ambuj Tewari
175
145
0
20 Jul 2011
Online Learning via Sequential Complexities
Online Learning via Sequential Complexities
Alexander Rakhlin
Karthik Sridharan
Ambuj Tewari
112
103
0
06 Jun 2010
1