ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.06971
  4. Cited By
What Doubling Tricks Can and Can't Do for Multi-Armed Bandits

What Doubling Tricks Can and Can't Do for Multi-Armed Bandits

19 March 2018
Lilian Besson
E. Kaufmann
ArXivPDFHTML

Papers citing "What Doubling Tricks Can and Can't Do for Multi-Armed Bandits"

11 / 11 papers shown
Title
Robust Online Learning with Private Information
Robust Online Learning with Private Information
Kyohei Okumura
105
0
0
08 May 2025
Stochastic Multi-armed Bandits in Constant Space
Stochastic Multi-armed Bandits in Constant Space
David Liau
Eric Price
Zhao Song
Ger Yang
54
35
0
25 Dec 2017
A framework for Multi-A(rmed)/B(andit) testing with online FDR control
A framework for Multi-A(rmed)/B(andit) testing with online FDR control
Fanny Yang
Aaditya Ramdas
Kevin Jamieson
Martin J. Wainwright
26
63
0
16 Jun 2017
A minimax and asymptotically optimal algorithm for stochastic bandits
A minimax and asymptotically optimal algorithm for stochastic bandits
Pierre Ménard
Aurélien Garivier
47
60
0
23 Feb 2017
An Improved Parametrization and Analysis of the EXP3++ Algorithm for
  Stochastic and Adversarial Bandits
An Improved Parametrization and Analysis of the EXP3++ Algorithm for Stochastic and Adversarial Bandits
Yevgeny Seldin
Gábor Lugosi
33
92
0
20 Feb 2017
On Explore-Then-Commit Strategies
On Explore-Then-Commit Strategies
Aurélien Garivier
E. Kaufmann
Tor Lattimore
45
107
0
29 May 2016
Regret Analysis of the Finite-Horizon Gittins Index Strategy for
  Multi-Armed Bandits
Regret Analysis of the Finite-Horizon Gittins Index Strategy for Multi-Armed Bandits
Tor Lattimore
41
47
0
18 Nov 2015
On the Complexity of A/B Testing
On the Complexity of A/B Testing
E. Kaufmann
Olivier Cappé
Aurélien Garivier
39
50
0
13 May 2014
Kullback-Leibler upper confidence bounds for optimal sequential
  allocation
Kullback-Leibler upper confidence bounds for optimal sequential allocation
Olivier Cappé
Aurélien Garivier
Odalric-Ambrym Maillard
Rémi Munos
Gilles Stoltz
86
394
0
03 Oct 2012
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis
E. Kaufmann
N. Korda
Rémi Munos
102
585
0
18 May 2012
A Contextual-Bandit Approach to Personalized News Article Recommendation
A Contextual-Bandit Approach to Personalized News Article Recommendation
Lihong Li
Wei Chu
John Langford
Robert Schapire
277
2,935
0
28 Feb 2010
1